
Debian Developer’s Reference

Adam Di Carlo, current maintainer<aph@debian.org>
Christian Schwarz<schwarz@debian.org>
Ian Jackson<ijackson@gnu.ai.mit.edu>

ver. 2.8.8, 20 July, 2001

Copyright Notice

copyright c©1998 – 2001 Adam Di Carlo
copyright c©1997, 1998 Christian Schwarz

This manual is free software; you may redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2, or (at your option) any later
version.

This is distributed in the hope that it will be useful, butwithout any warranty; without even the implied
warranty of merchantability or fitness for a particular purpose. See the GNU General Public License for
more details.

A copy of the GNU General Public License is available as/usr/share/common-licenses/GPL in
the Debian GNU/Linux distribution or on the World Wide Web at the GNU website (http://www.gnu.
org/copyleft/gpl.html). You can also obtain it by writing to the Free Software Foundation, Inc.,
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html

i

Contents

1 Scope of This Document 1

2 Applying to Become a Maintainer 3

2.1 Getting started. 3

2.2 Registering as a Debian developer. 3

2.3 Debian Mentors. 5

3 Debian Developer’s Duties 7

3.1 Maintaining Your Debian Information. 7

3.2 Maintaining Your Public Key. 7

3.3 Going On Vacation Gracefully. 8

3.4 Coordination With Upstream Developers. 8

3.5 Managing Release Critical Bugs. 8

3.6 Quality Assurance Effort. 9

3.7 Retiring Gracefully . 9

4 Mailing Lists, Servers, and Other Machines 11

4.1 Mailing lists .11

4.2 Debian servers .12

4.2.1 The master server. .12

4.2.2 The ftp-master server. .12

4.2.3 The WWW server .13

CONTENTS ii

4.2.4 The CVS server. .13

4.2.5 Mirrors of Debian servers. .13

4.3 Other Debian Machines. .14

5 The Debian Archive 15

5.1 Overview .15

5.2 Sections. .17

5.3 Architectures .18

5.4 Subsections. .18

5.5 Packages .18

5.6 Distribution directories. .19

5.6.1 Stable, testing, unstable, and sometimes frozen. 19

5.6.2 Experimental. .20

5.7 Release code names. .21

6 Package uploads 23

6.1 Announcing new packages. .23

6.2 Uploading a package. .24

6.2.1 Generating the changes file. .24

6.2.2 Picking a distribution. .24

6.2.3 Checking the package prior to upload. 26

6.2.4 Uploading toftp-master .26

6.2.5 Uploading tonon-US (pandora). .27

6.2.6 Uploads viachiark .27

6.2.7 Uploads viaerlangen .28

6.2.8 Other Upload Queues. .28

6.3 Announcing package uploads. .28

6.4 Notification that a new package has been installed. 29

6.4.1 The override file .29

CONTENTS iii

7 Non-Maintainer Uploads (NMUs) 31

7.1 Terminology. .31

7.2 Who can do an NMU. .32

7.3 When to do a source NMU. .32

7.4 How to do a source NMU. .33

7.4.1 Source NMU version numbering. .33

7.4.2 Source NMUs must have a new changelog entry. 34

7.4.3 Source NMUs and the Bug Tracking System. 34

7.4.4 Building source NMUs. .35

8 Porting and Being Ported 37

8.1 Being Kind to Porters. .37

8.2 Guidelines for Porter Uploads. .38

8.2.1 When to do a source NMU if you are a porter. 38

8.3 Tools for Porters. .39

8.3.1 quinn-diff .39

8.3.2 buildd .39

8.3.3 dpkg-cross .40

9 Moving, Removing, Renaming, Adopting, and Orphaning Packages 41

9.1 Moving packages. .41

9.2 Removing packages. .42

9.2.1 Removing packages fromIncoming . 42

9.3 Replacing or renaming packages. .42

9.4 Orphaning a package. .42

9.5 Adopting a package. .43

10 Handling Bugs 45

10.1 Monitoring bugs. .45

10.2 Submitting Bugs .45

CONTENTS iv

10.3 Responding to Bugs. .46

10.4 When bugs are closed by new uploads. .46

10.5 Lintian reports. .47

10.6 Reporting lots of bugs at once. .47

11 Interaction with Prospective Developers 49

11.1 Sponsoring packages. .49

11.2 Advocating new developers. .49

11.3 Handling new maintainer applications. .50

12 Overview of Debian Maintainer Tools 51

12.1 dpkg-dev .51

12.2 lintian .51

12.3 debconf .52

12.4 debhelper .52

12.5 debmake .52

12.6 yada .52

12.7 equivs .52

12.8 cvs-buildpackage .53

12.9 dupload .53

12.10fakeroot .53

12.11devscripts .53

12.12debget .53

1

Chapter 1

Scope of This Document

The purpose of this document is to provide an overview of the recommended procedures and the available
resources for Debian developers.

The procedures discussed within include how to become a maintainer (‘Applying to Become a Maintainer’
on page3); how to upload new packages (‘Package uploads’ on page23); how and when to do ports and
interim releases of other maintainers’ packages (‘Non-Maintainer Uploads (NMUs)’ on page31); how to
move, remove, or orphan packages (‘Moving, Removing, Renaming, Adopting, and Orphaning Packages’
on page41); and how to handle bug reports (‘Handling Bugs’ on page45).

The resources discussed in this reference include the mailing lists and servers (‘Mailing Lists, Servers, and
Other Machines’ on page11); a discussion of the structure of the Debian archive (‘The Debian Archive’ on
page15); explanation of the different servers which accept package uploads (‘Uploading toftp-master ’
on page26); and a discussion of resources which can help maintainers with the quality of their packages
(‘Overview of Debian Maintainer Tools’ on page51).

It should be clear that this reference does not discuss the technical details of the Debian package nor how
to generate Debian packages. Nor does this reference detail the standards to which Debian software must
comply. All of such information can be found in the Debian Policy Manual (http://www.debian.
org/doc/debian-policy/).

Furthermore, this document isnot an expression of formal policy. It contains documentation for the Debian
system and generally agreed-upon best practices. Thus, it is what is called a “normative” document.

http://www.debian.org/doc/debian-policy/
http://www.debian.org/doc/debian-policy/

Chapter 1. Scope of This Document 2

3

Chapter 2

Applying to Become a Maintainer

2.1 Getting started

So, you’ve read all the documentation, you understand what everything in thehello example package is
for, and you’re about to Debianize your favourite piece of software. How do you actually become a Debian
developer so that your work can be incorporated into the Project?

Firstly, subscribe to<debian-devel@lists.debian.org> if you haven’t already. Send the word
subscribe in the Subjectof an email to<debian-devel-REQUEST@lists.debian.org> . In
case of problems, contact the list administrator at<listmaster@lists.debian.org> . More infor-
mation on available mailing lists can be found in ‘Mailing lists’ on page11.

You should subscribe and lurk (that is, read without posting) for a bit before doing any coding, and you
should post about your intentions to work on something to avoid duplicated effort.

Another good list to subscribe to is<debian-mentors@lists.debian.org> . See ‘Debian Men-
tors’ on page5 for details. The IRC channel#debian on the Linux People IRC network (e.g.,irc.debian.org)
can also be helpful.

2.2 Registering as a Debian developer

Before you decide to register with the Debian Project, you will need to read the Debian Social Contract
(http://www.debian.org/social_contract). Registering as a developer means that you agree
with and pledge to uphold the Debian Social Contract; it is very important that maintainers are in accord
with the essential ideas behind Debian GNU/Linux. Reading the GNU Manifesto (http://www.gnu.
org/gnu/manifesto.html) would also be a good idea.

The process of registering as a developer is a process of verifying your identity and intentions. As the
number of people working on Debian GNU/Linux has grown to over 800 people and our systems are used in

http://www.debian.org/social_contract
http://www.gnu.org/gnu/manifesto.html
http://www.gnu.org/gnu/manifesto.html

Chapter 2. Applying to Become a Maintainer 4

several very important places we have to be careful about being compromised. Therefore, we need to verify
new maintainers before we can give them accounts on our servers and letting them upload packages.

Registration requires that the following information be sent in appropriate steps described at Checklist for
applicants (http://www.debian.org/devel/join/nm-checklist) after the initial contact to
<new-maintainer@debian.org> :

• Your name.

• Your preferred login name onmaster (eight characters or less), as well as the email address at which
you’d prefer to be subscribed to<debian-private@lists.debian.org> (typically this will
be either your primary mail address or your newdebian.org address).

• A phone number where we can call you. Remember that the new maintainer team usually calls during
evening hours to save on long distance tolls. Please do not give a work number, unless you are
generally there in the evening.

• A statement of intention, that is, what package(s) you intend to work on, which Debian port you will
be assisting, or how you intend to contribute to Debian.

• A statement that you have read and agree to uphold the Debian Social Contract (http://www.
debian.org/social_contract).

• Some mechanism by which we can verify your real-life identity. For example, any of the following
mechanisms would suffice:

– An OpenPGP key signed by any well-known signature, such as:

∗ Any current Debian developer you have metin real life.

∗ Any formal certification service (such as Verisign, etc.) that verifies your identity. A certi-
fication that verifies your email address, and not you identity, is not sufficient.

– Alternatively, you may identify yourself with a scanned (or physically mailed) copy of any
formal documents certifying your identity (such as a birth certificate, national ID card, U.S.
Driver’s License, etc.). If emailed, please sign the mail with your OpenPGP key.

If you do not have an OpenPGP key yet, generate one. Every developer needs a OpenPGP key in order to
sign and verify package uploads. You should read the manual for the software you are using, since it has
much important information which is critical to its security. Many more security failures are due to human
error than to software failure or high-powered spy techniques. See ‘Maintaining Your Public Key’ on page7
for more information on maintaining your public key.

Debian uses theGNU Privacy Guard (packagegnupg version 1 or better as its baseline standard. You
can use some other implementation of OpenPGP as well. Note that OpenPGP is a open standard based on
RFC 2440 (http://www.gnupg.org/rfc2440.html).

http://www.debian.org/devel/join/nm-checklist
http://www.debian.org/social_contract
http://www.debian.org/social_contract
http://www.gnupg.org/rfc2440.html

Chapter 2. Applying to Become a Maintainer 5

The recommended public key algorithm for use in Debian development work is the DSA (sometimes call
“DSS” or “DH/ElGamal”). Other key types may be used however. Your key length must be at least 1024
bits; there is no reason to use a smaller key, and doing so would be much less secure. Your key must be
signed with at least your own user ID; this prevents user ID tampering.gpg does this automatically.

Also remember that one of the names on your key must match the email address you list as the official main-
tainer for your packages. For instance, I set the maintainer of thedevelopers-reference package to
“Adam Di Carlo<aph@debian.org>”; therefore, one of the user IDs on my key is that same value, “Adam
Di Carlo<aph@debian.org>”.

If your public key isn’t on public key servers such aspgp5.ai.mit.edu , please read the documentation
available locally in/usr/doc/pgp/keyserv.doc . That document contains instructions on how to put
your key on the public key servers. The New Maintainer Group will put your public key on the servers if it
isn’t already there.

Due to export restrictions by the United States government some Debian packages, includinggnupg , are
located on ftp sites outside of the United States. You can find the current locations of those packages at
ftp://ftp.debian.org/debian/README.non-US .

Some countries restrict the use of cryptographic software by their citizens. This need not impede one’s ac-
tivities as a Debian package maintainer however, as it may be perfectly legal to use cryptographic products
for authentication, rather than encryption purposes (as is the case in France). The Debian Project does not
require the use of cryptographyquacryptography in any manner. If you live in a country where use of cryp-
tography even for authentication is forbidden then please contact us so we can make special arrangements.

Once you have all your information ready, and your public key is available on public key servers, send a
message to<new-maintainer@debian.org> to register as an offical Debian developer so that you
will be able to upload your packages. This message must contain your name and your valid e-mail address.
All the information discussed above is required after your Application Manager is assigned. Application
Manager is your agent in the registration process, and you can always ask him about the status of your
application. You can check the Application StatusBoard (http://nm.debian.org/) as well.

For more details, please consult New Maintainer’s Corner (http://www.debian.org/devel/join/
newmaint) at the Debian web site.

Once this information is received and processed, you should be contacted with information about your new
Debian maintainer account. If you don’t hear anything within a month, please send a followup message
asking if your original application was received. Donot re-send your original application, that will just con-
fuse the New Maintainer Group. Please be patient, especially near release points; mistakes do occasionally
happen, and people do sometimes run out of volunteer time.

2.3 Debian Mentors

The mailing list<debian-mentors@lists.debian.org> has been set up for novice maintainers
who seek help with initial packaging and other developer-related issues. Every new developer is invited to

ftp://ftp.debian.org/debian/README.non-US
http://nm.debian.org/
http://www.debian.org/devel/join/newmaint
http://www.debian.org/devel/join/newmaint

Chapter 2. Applying to Become a Maintainer 6

subscribe to that list (see ‘Mailing lists’ on page11 for details).

Those who prefer one-on-one help (e.g., via private email) should also post to that list and an experienced
developer will volunteer to help.

7

Chapter 3

Debian Developer’s Duties

3.1 Maintaining Your Debian Information

There’s a LDAP database containing many informations concerning all developers, you can access it at
https://db.debian.org/ . You can update your password (this password is propagated to most of
the machines that are accessible to you), your address, your country, the latitude and longitude of the point
where you live, phone and fax numbers, your preferred shell, your IRC nickname, your web page and the
email that you’re using as alias for your debian.org email. Most of the information is not accessible to the
public, for more details about this database, please read its online documentation that you can find here :
http://db.debian.org/doc-general.html .

You have to keep the information available there up to date.

3.2 Maintaining Your Public Key

Be very careful with your private keys. Do not place them on any public servers or multiuser machines, such
asmaster.debian.org . Back your keys up; keep a copy offline. Read the documentation that comes
with your software; read the PGP FAQ (http://www.cam.ac.uk.pgp.net/pgpnet/pgp-faq/).

If you add signatures to your public key, or add user identities, you can update the debian keyring by sending
your key to the key server atkeyring.debian.org . If you need to add a completely new key, or remove
an old key, send mail to<keyring-maint@debian.org> . The same key extraction routines discussed
in ‘Registering as a Debian developer’ on page3 apply.

You can find a more in-depth discussion of Debian key maintenance in the documentation for thedebian-
keyring package.

https://db.debian.org/
http://db.debian.org/doc-general.html
http://www.cam.ac.uk.pgp.net/pgpnet/pgp-faq/

Chapter 3. Debian Developer’s Duties 8

3.3 Going On Vacation Gracefully

Most developers take vacations, and usually this means that they can’t work for Debian and they can’t be
reached by email if any problem occurs. The other developers need to know that you’re on vacation so
that they’ll do whatever is needed when such a problem occurs. Usually this means that other developers
are allowed to NMU (see ‘Non-Maintainer Uploads (NMUs)’ on page31) your package if a big problem
(release critical bugs, security update, . . .) occurs while you’re on vacation.

In order to inform the other developers, there’s two things that you should do. First send a mail to<debian-private@
lists.debian.org> giving the period of time when you will be on vacation. You can also give some
special instructions on what to do if any problem occurs. Next you should update your information available
in the Debian LDAP database and mark yourself as “on vacation” (this information is only accessible to
debian developers). Don’t forget to remove the “on vacation” flag when you come back.

3.4 Coordination With Upstream Developers

A big part of your job as Debian maintainer will be to stay in contact with the upstream developers. Debian
users will sometimes report bugs to the Bug Tracking System that are not specific to Debian. You must
forward these bug reports to the upstream developers so that they can be fixed in a future release. It’s not
your job to fix non-Debian specific bugs. However, if you are able to do so, you are encouraged to contribute
to upstream development of the package by providing a fix for the bug. Debian users and developers will
often submit patches to fix upstream bugs, and you should evaluate and forward these patches upstream.

If you need to modify the upstream sources in order to build a policy conformant package, then you should
propose a nice fix to the upstream developers which can be included there, so that you won’t have to modify
the sources of the next upstream version. Whatever changes you need, always try not to fork from the
upstream sources.

3.5 Managing Release Critical Bugs

Release Critical Bugs (RCB) are all bugs that have severitycritical, graveor serious. Those bugs can delay
the Debian release and/or can justify the removal of a package at freeze time. That’s why those bugs needs
to be corrected as fast as possible. You must be aware that some developers who are part of the Debian
Quality Assurance (http://qa.debian.org/) effort are following those bugs and try to help you
each time they can. But if you can’t fix such bugs within 2 weeks, you should either ask for help by sending
a mail to the Quality Assurance (QA) group<debian-qa@lists.debian.org> , or justify yourself
and present your plan to fix it by sending a mail to the bug concerned report. Otherwise people from the QA
group may want to do a Non-Maintainer Upload (see ‘Non-Maintainer Uploads (NMUs)’ on page31) after
trying to contact you (they might not wait as long as usual before they do their NMU if they have seen no
recent activity from you on the BTS).

http://qa.debian.org/

Chapter 3. Debian Developer’s Duties 9

3.6 Quality Assurance Effort

Even though there is a dedicated group of people for Quality Assurance, QA duties are not reserved solely to
them. You can participate in this effort by keeping your packages as bug free as possible, and as lintian-clean
(see ‘Lintian reports’ on page47) as possible. If you think that it’s quite impossible, then you should consider
orphaning (see ‘Orphaning a package’ on page42) some of your packages so that you can do a good job with
the other packages that you maintain. Alternatively you may ask the help of other people in order to catch
up the backlog of bugs that you have (you can ask for help on<debian-qa@lists.debian.org> or
<debian-devel@lists.debian.org>).

3.7 Retiring Gracefully

If you choose to leave the Debian project, you should make sure you do the following steps:

1. Orphan all your packages, as described in ‘Orphaning a package’ on page42.

2. Send an email about how you are leaving the project to<debian-private@lists.debian.
org> .

3. Notify the Debian key ring maintainers that you are leaving by emailing to<keyring-maint@
debian.org> .

Chapter 3. Debian Developer’s Duties 10

11

Chapter 4

Mailing Lists, Servers, and Other Machines

In this chapter you will find a very brief road map of the Debian mailing lists, the main Debian servers, and
other Debian machines which may be available to you as a developer.

4.1 Mailing lists

The mailing list server is atlists.debian.org . Mail debian- foo -REQUEST@lists.debian.org ,
wheredebian- foo is the name of the list, with the wordsubscribe in theSubjectto subscribe to the list
or unsubscribe to unsubscribe. More detailed instructions on how to subscribe and unsubscribe to the
mailing lists can be found athttp://www.debian.org/MailingLists/subscribe , ftp://
ftp.debian.org/debian/doc/mailing-lists.txt or locally in/usr/doc/debian/mailing-lists.
txt if you have thedoc-debian package installed.

When replying to messages on the mailing list, please do not send a carbon copy (CC) to the original poster
unless they explicitly request to be copied. Anyone who posts to a mailing list should read it to see the
responses.

The following are the core Debian mailing lists:<debian-devel@lists.debian.org> , <debian-policy@
lists.debian.org> , <debian-user@lists.debian.org> , <debian-private@lists.
debian.org> , <debian-announce@lists.debian.org> , and<debian-devel-announce@
lists.debian.org> . All developers are expected to be subscribed to at least<debian-private@
lists.debian.org> and<debian-devel-announce@lists.debian.org> . There are other
mailing lists are available for a variety of special topics; seehttp://www.debian.org/MailingLists/
subscribe for a list. Cross-posting (sending the same message to multiple lists) is discouraged.

<debian-private@lists.debian.org> is a special mailing list for private discussions amongst
Debian developers. It is meant to be used for posts which for whatever reason should not be published
publically. As such, it is a low volume list, and users are urged not to use<debian-private@lists.
debian.org> unless it is really necessary. Moreover, donot forward email from that list to anyone.

http://www.debian.org/MailingLists/subscribe
ftp://ftp.debian.org/debian/doc/mailing-lists.txt
ftp://ftp.debian.org/debian/doc/mailing-lists.txt
http://www.debian.org/MailingLists/subscribe
http://www.debian.org/MailingLists/subscribe

Chapter 4. Mailing Lists, Servers, and Other Machines 12

<debian-email@lists.debian.org> is a special mailing list used as a grab-bag for Debian related
correspondence such as contacting upstream authors about licenses, bugs, etc. or discussing the project with
others where it might be useful to have the discussion archived somewhere.

As ever on the net, please trim down the quoting of articles you’re replying to. In general, please adhere to
the usual conventions for posting messages.

Online archives of mailing lists are available athttp://lists.debian.org/ .

4.2 Debian servers

Debian servers are well known servers which serve critical functions in the Debian project. Every developer
should know what these servers are and what they do.

If you have a problem with the operation of a Debian server, and you think that the system operators need
to be notified of this problem, please find the contact address for the particular machine athttp://db.
debian.org/machines.cgi . If you have a non-operating problems (such as packages to be remove,
suggestions for the web site, etc.), generally you’ll report a bug against a “pseudo-package”. See ‘Submitting
Bugs’ on page45 for information on how to submit bugs.

4.2.1 The master server

master.debian.org is the canonical location for the Bug Tracking System (BTS). If you plan on doing
some statistical analysis or processing of Debian bugs, this would be the place to do it. Please describe your
plans on<debian-devel@lists.debian.org> before implementing anything, however, to reduce
unnecessary duplication of effort or wasted processing time.

All Debian developers have accounts onmaster.debian.org . Please take care to protect your password
to this machine. Try to avoid login or upload methods which send passwords over the Internet in the clear.

If you find a problem withmaster.debian.org such as disk full, suspicious activity, or whatever, send
an email to<debian-admin@debian.org> .

4.2.2 The ftp-master server

The ftp-master server,ftp-master.debian.org (or auric.debian.org), holds the canonical
copy of the Debian archive (excluding the non-U.S. packages). Generally, package uploads go to this server;
see ‘Package uploads’ on page23.

Problems with the Debian FTP archive generally need to be reported as bugs against theftp.debian.org
pseudo-package or an email to<ftpmaster@debian.org> , but also see the procedures in ‘Moving,
Removing, Renaming, Adopting, and Orphaning Packages’ on page41.

http://lists.debian.org/
http://db.debian.org/machines.cgi
http://db.debian.org/machines.cgi

Chapter 4. Mailing Lists, Servers, and Other Machines 13

4.2.3 The WWW server

The main web server,www.debian.org , is also known asklecker.debian.org . All developers are
given accounts on this machine.

If you have some Debian-specific information which you want to serve up on the web, you can do this
by putting material in thepublic_html directory under your home directory. You should do this on
klecker.debian.org . Any material you put in those areas are accessible via the URLhttp://people.debian.org/˜ user-
id / . You should only use this particular location because it will be backed up, whereas on other hosts it
won’t. Please do not put any material on Debian servers not relating to Debian, unless you have prior
permission. Send mail to<debian-devel@lists.debian.org> if you have any questions.

If you find a problem with the Debian web server, you should generally submit a bug against the pseudo-
package,www.debian.org . First check whether or not someone else has already reported the problem
on the Bug Tracking System (http://bugs.debian.org/www.debian.org).

4.2.4 The CVS server

cvs.debian.org is also known asklecker.debian.org , discussed above. If you need to use a
publically accessible CVS server, for instance, to help coordinate work on a package between many different
developers, you can request a CVS area on the server.

Generally,cvs.debian.org offers a combination of local CVS access, anonymous client-server read-
only access, and full client-server access throughssh . Also, the CVS area can be accessed read-only via
the Web athttp://cvs.debian.org/ .

To request a CVS area, send a request via email to<debian-admin@debian.org> . Include the name
of the requested CVS area, Debian account should own the CVS root area, and why you need it.

4.2.5 Mirrors of Debian servers

The web and FTP servers have several mirrors available. Please do not put heavy load on the canonical FTP
or web servers. Ideally, the canonical servers only mirror out to a first tier of mirrors, and all user access
is to the mirrors. This allows Debian to better spread its bandwidth requirements over several servers and
networks. Note that newer push mirroring techniques ensure that mirrors are as up-to-date as they can be.

The main web page listing the available public FTP (and, usually, HTTP) servers can be found athttp:
//www.debian.org/distrib/ftplist . More information concerning Debian mirrors can be found
at http://www.debian.org/mirror/ . This useful page includes information and tools which can
be helpful if you are interested in setting up your own mirror, either for internal or public access.

Note that mirrors are generally run by third-parties who are interested in helping Debian. As such, develop-
ers generally do not have accounts on these machines.

http://bugs.debian.org/www.debian.org
http://cvs.debian.org/
http://www.debian.org/distrib/ftplist
http://www.debian.org/distrib/ftplist
http://www.debian.org/mirror/

Chapter 4. Mailing Lists, Servers, and Other Machines 14

4.3 Other Debian Machines

There are other Debian machines which may be made available to you. You can use these for Debian-related
purposes as you see fit. Please be kind to system administrators, and do not use up tons and tons of disk
space, network bandwidth, or CPU without first getting the approval of the local maintainers. Usually these
machines are run by volunteers. Generally, these machines are for porting activities.

Aside from the servers mentioned in ‘Debian servers’ on page12, there is a list of machines available to
Debian developers athttp://db.debian.org/machines.cgi .

http://db.debian.org/machines.cgi

15

Chapter 5

The Debian Archive

5.1 Overview

The Debian GNU/Linux distribution consists of a lot of Debian packages (.deb ’s, currently around 6800)
and a few additional files (documentation, installation disk images, etc.).

Here is an example directory tree of a complete Debian archive:

dists/stable/main/
dists/stable/main/binary-all/
dists/stable/main/binary-all/admin/
dists/stable/main/binary-all/base/
dists/stable/main/binary-all/comm/
dists/stable/main/binary-all/devel/

...
dists/stable/main/binary-i386/
dists/stable/main/binary-i386/admin/
dists/stable/main/binary-i386/base/

...
dists/stable/main/binary-m68k/
dists/stable/main/binary-m68k/admin/
dists/stable/main/binary-m68k/base/

...
dists/stable/main/source/
dists/stable/main/source/admin/
dists/stable/main/source/base/

...
dists/stable/main/disks-i386/

Chapter 5. The Debian Archive 16

dists/stable/main/disks-m68k/
...

dists/stable/contrib/
dists/stable/contrib/binary-all/
dists/stable/contrib/binary-i386/
dists/stable/contrib/binary-m68k/

...
dists/stable/contrib/source/

dists/stable/non-free/
dists/stable/non-free/binary-all/
dists/stable/non-free/binary-i386/
dists/stable/non-free/binary-m68k/

...
dists/stable/non-free/source/

dists/testing/
dists/testing/main/

...
dists/testing/contrib/

...
dists/testing/non-free/

...

dists/unstable
dists/unstable/main/

...
dists/unstable/contrib/

...
dists/unstable/non-free/

...

pool/
pool/a/
pool/a/apt/

...
pool/b/
pool/b/bash/

...
pool/liba/
pool/liba/libalias-perl/

Chapter 5. The Debian Archive 17

...
pool/m/
pool/m/mailx/

...

As you can see, the top-level directory contains two directories,dists/ andpool/ . The latter is a “pool”
in which the packages actually are, and which is handled by the archive maintenance database and the
accompanying programs. The former contains the distributions,stable, testingandunstable. Each of those
distribution directories is divided in equivalent subdirectories purpose of which is equal, so we will only
explain how it looks in stable. ThePackages andSources files in the distribution subdirectories can
reference files in thepool/ directory.

dists/stable contains three directories, namelymain, contrib, andnon-free.

In each of the areas, there is a directory with the source packages (source), a directory for each supported
architecture (binary-i386 , binary-m68k , etc.), and a directory for architecture independent packages
(binary-all).

The main area contains additional directories which holds the disk images and some essential pieces of
documentation required for installing the Debian distribution on a specific architecture (disks-i386 ,
disks-m68k , etc.).

Thebinary-* andsourcedirectories are divided further intosubsections.

5.2 Sections

The main section of the Debian archive is what makes up theofficial Debian GNU/Linux distribution .
Themainsection is official because it fully complies with all our guidelines. The other two sections do not,
to different degrees; as such, they arenot officially part of Debian GNU/Linux.

Every package in the main section must fully comply with the Debian Free Software Guidelines (http:
//www.debian.org/social_contract\hyper@hashguidelines) (DFSG) and with all other
policy requirements as described in the Debian Policy Manual (http://www.debian.org/doc/debian-policy/).
The DFSG is our definition of “free software.” Check out the Debian Policy Manual for details.

Packages in thecontrib section have to comply with the DFSG, but may fail other requirements. For in-
stance, they may depend on non-free packages.

Packages which do not apply to the DFSG are placed in thenon-freesection. These packages are not
considered as part of the Debian distribution, though we support their use, and we provide infrastructure
(such as our bug-tracking system and mailing lists) for non-free software packages.

The Debian Policy Manual (http://www.debian.org/doc/debian-policy/) contains a more
exact definition of the three sections. The above discussion is just an introduction.

http://www.debian.org/social_contract#guidelines
http://www.debian.org/social_contract#guidelines
http://www.debian.org/doc/debian-policy/
http://www.debian.org/doc/debian-policy/

Chapter 5. The Debian Archive 18

The separation of the three sections at the top-level of the archive is important for all people who want to
distribute Debian, either via FTP servers on the Internet or on CD-ROMs: by distributing only themain
andcontrib sections, one can avoid any legal risks. Some packages in thenon-freesection do not allow
commercial distribution, for example.

On the other hand, a CD-ROM vendor could easily check the individual package licenses of the packages in
non-freeand include as many on the CD-ROMs as he’s allowed to. (Since this varies greatly from vendor to
vendor, this job can’t be done by the Debian developers.)

5.3 Architectures

In the first days, the Linux kernel was only available for the Intel i386 (or greater) platforms, and so was
Debian. But when Linux became more and more popular, the kernel was ported to other architectures, too.

The Linux 2.0 kernel supports Intel x86, DEC Alpha, SPARC, Motorola 680x0 (like Atari, Amiga and
Macintoshes), MIPS, and PowerPC. The Linux 2.2 kernel supports even more architectures, including ARM
and UltraSPARC. Since Linux supports these platforms, Debian decided that it should, too. Therefore,
Debian has ports underway; in fact, we also have ports underway to non-Linux kernel. Aside fromi386 (our
name for Intel x86), there ism68k, alpha, powerpc, sparc, hurd-i386, andarm, as of this writing.

Debian GNU/Linux 1.3 is only available asi386. Debian 2.0 shipped fori386 and m68karchitectures.
Debian 2.1 ships for thei386, m68k, alpha, andsparcarchitectures. Debian 2.2 adds support for thepowerpc
andarmarchitectures.

Information for developers or uses about the specific ports are available at the Debian Ports web pages
(http://www.debian.org/ports/).

5.4 Subsections

The sectionsmain, contrib, andnon-freeare split intosubsectionsto simplify the installation process and
the maintainance of the archive. Subsections are not formally defined, except perhaps the ‘base’ subsection.
Subsections simply exist to simplify the organization and browsing of available packages. Please check the
current Debian distribution to see which sections are available.

Note however that with the introduction of package pools (see the top-levelpool/ directory), the subsections
in the form of subdirectories will eventually cease to exist. They will be kept in the packages’ ‘Section’
header fields, though.

5.5 Packages

There are two types of Debian packages, namelysourceandbinarypackages.

http://www.debian.org/ports/

Chapter 5. The Debian Archive 19

Source packages consist of either two or three files: a.dsc file, and either a.tar.gz file or both an
.orig.tar.gz and a.diff.gz file.

If a package is developed specially for Debian and is not distributed outside of Debian, there is just one
.tar.gz file which contains the sources of the program. If a package is distributed elsewhere too, the
.orig.tar.gz file stores the so-calledupstream source code, that is the source code that’s distributed
from theupstream maintainer(often the author of the software). In this case, the.diff.gz contains the
changes made by the Debian maintainer.

The.dsc lists all the files in the source package together with checksums (md5sums) and some additional
info about the package (maintainer, version, etc.).

5.6 Distribution directories

The directory system described in the previous chapter is itself contained withindistribution directories.
Each distribution is actually contained in thepool directory in the top-level of the Debian archive itself.

To summarize, the Debian archive has a root directory within an FTP server. For instance, at the mirror site,
ftp.us.debian.org , the Debian archive itself is contained in/debian , which is a common location
(another is/pub/debian).

A distribution is comprised of Debian source and binary packages, and the respectiveSources andPack-
ages index files, containing the header information from all those packages. The former are kept in the
pool/ directory, while the latter are kept in thedists/ directory of the archive (because of backwards
compatibility).

5.6.1 Stable, testing, unstable, and sometimes frozen

There is always a distribution calledstable(residing indists/stable), one calledtesting(residing in
dists/testing), and one calledunstable(residing indists/unstable). This reflects the develop-
ment process of the Debian project.

Active development is done in theunstabledistribution (that’s why this distribution is sometimes called the
development distribution). Every Debian developer can update his or her packages in this distribution at any
time. Thus, the contents of this distribution change from day-to-day. Since no special effort is done to make
sure everything in this distribution is working properly, it is sometimes “unstable.”

Packages get copied fromunstableto testingif they satisfy certain criteria. To get intotestingdistribution,
a package needs to be in the archive for two weeks and not have any release critical bugs. After that period,
it will propagate intotestingas soon as anything it depends on is also added. This process is automatic.

After a period of development, once the release manager deems fit, thetestingdistribution is renamed to
frozen. Once that has been done, no changes are allowed to that distribution except bug fixes; that’s why
it’s called “frozen.” After another month or a little longer, depending on the progress, thefrozendistribution

ftp.us.debian.org

Chapter 5. The Debian Archive 20

goes into a ‘deep freeze’, when no changes are made to it except those needed for the installation system.
This is called a “test cycle”, and it can last up to two weeks. There can be several test cycles, until the
distribution is prepared for release, as decided by the release manager. At the end of the last test cycle, the
frozendistribution is renamed tostable, overriding the oldstabledistribution, which is removed at that time.

This development cycle is based on the assumption that theunstabledistribution becomesstableafter pass-
ing a period of testing asfrozen. Even once a distribution is considered stable, a few bugs inevitably remain–
that’s why the stable distribution is updated every now and then. However, these updates are tested very
carefully and have to be introduced into the archive individually to reduce the risk of introducing new
bugs. You can find proposed additions tostablein theproposed-updates directory. Those packages
in proposed-updates that pass muster are periodically moved as a batch into the stable distribution
and the revision level of the stable distribution is incremented (e.g., ‘1.3’ becomes ‘1.3r1’, ‘2.0r2’ becomes
‘2.0r3’, and so forth).

Note that development underunstablecontinues during the “freeze” period, since theunstabledistribution
remains in place when thetestingis moved tofrozen. Another wrinkle is that when thefrozendistribution
is offically released, the old stable distribution is completely removed from the Debian archives (although
they do live on atarchive-host;).

In summary, there is always astable, atestingand anunstabledistribution available, and afrozendistribution
shows up for a couple of months from time to time.

5.6.2 Experimental

The experimentaldistribution is a specialty distribution. It is not a full distribution in the same sense as
‘stable’ and ‘unstable’ are. Instead, it is meant to be a temporary staging area for highly experimental
software where there’s a good chance that the software could break your system. Users who download and
install packages fromexperimentalare expected to have been duly warned. In short, all bets are off for the
experimentaldistribution.

Developers should be very selective in the use of theexperimentaldistribution. Even if a package is highly
unstable, it could still go intounstable; just state a few warnings in the description. However, if there is a
chance that the software could do grave damage to a system, it might be better to put it intoexperimental.

For instance, an experimental encrypted file system should probably go intoexperimental. A new, beta,
version of some software which uses completely different configuration might go intoexperimentalat the
maintainer’s discretion. New software which isn’t likely to damage your system can go intounstable. If you
are working on an incompatible or complex upgrade situation, you can also useexperimentalas a staging
area, so that testers can get early access.

However, usingexperimentalas a personal staging area is not always the best idea. You can’t replace or
upgrade the files in there on your own (it is done with Debian archive maintenance software). Additionally,
you’ll have to remember to ask the archive maintainers to delete the package once you have uploaded it to
unstable. Using your personal web space onklecker.debian.org is generally a better idea, so that
you put less strain on the Debian archive maintainers.

Chapter 5. The Debian Archive 21

5.7 Release code names

Every released Debian distribution has acode name: Debian 1.1 is called ‘buzz’; Debian 1.2, ‘rex’; Debian
1.3, ‘bo’; Debian 2.0, ‘hamm’; Debian 2.1, ‘slink’; and Debian 2.2, ‘potato’. There is also a “pseudo-
distribution”, called ‘sid’, which is the current ‘unstable’ distribution; since packages are moved from ‘un-
stable’ to ‘testing’ as they approach stability, ‘sid’ itself is never released. As well as the usual contents
of a Debian distribution, ‘sid’ contains packages for architectures which are not yet officially supported or
released by Debian. These architectures are planned to be integrated into the mainstream distribution at
some future date.

Since Debian has an open development model (i.e., everyone can participate and follow the development)
even the ‘unstable’ and ‘testing’ distributions are distributed to the Internet through the Debian FTP and
HTTP server network. Thus, if we had called the directory which contains the release candidate version
‘testing’, then we would have to rename it to ‘stable’ when the version is released, which would cause all
FTP mirrors to re-retrieve the whole distribution (which is quite large).

On the other hand, if we called the distribution directoriesDebian-x.yfrom the beginning, people would
think that Debian releasex.y is available. (This happened in the past, where a CD-ROM vendor built a
Debian 1.0 CD-ROM based on a pre-1.0 development version. That’s the reason why the first official
Debian release was 1.1, and not 1.0.)

Thus, the names of the distribution directories in the archive are determined by their code names and not
their release status (e.g., ‘slink’). These names stay the same during the development period and after the
release; symbolic links, which can be changed easily, indicate the currently released stable distribution.
That’s why the real distribution directories use thecode names, while symbolic links forstable, testing,
unstable, andfrozenpoint to the appropriate release directories.

Chapter 5. The Debian Archive 22

23

Chapter 6

Package uploads

6.1 Announcing new packages

If you want to create a new package for the Debian distribution, you should first check the Work-Needing
and Prospective Packages (WNPP) (http://www.debian.org/devel/wnpp/) list. Checking the
WNPP list ensures that no one is already working on packaging that software, and that effort is not dupli-
cated. Read the WNPP web pages (http://www.debian.org/devel/wnpp/) for more information.

Assuming no one else is already working on your prospective package, you must then submit a bug report
(‘Submitting Bugs’ on page45) against the pseudo packagewnpp describing your plan to create a new
package, including, but not limiting yourself to, a description of the package, the license of the prospective
package and the current URL where it can be downloaded from.

You should set the subject of the bug to “ITP:foo – short description”, substituting the name of the new
package forfoo. The severity of the bug report must be set towishlist. If you feel it’s necessary, send a copy
to <debian-devel@lists.debian.org> by putting the address in the X-Debbugs-CC: header of
the message (no, don’t use CC:, because that way the message’s subject won’t indicate the bug number).

Please include aCloses: bug# nnnnn entry on the changelog of the new package in order for the bug
report to be automatically closed once the new package is installed on the archive (‘When bugs are closed
by new uploads’ on page46).

There are a number of reasons why we ask maintainers to announce their intentions:
• It helps the (potentially new) maintainer to tap into the experience of people on the list, and lets them

know if anyone else is working on it already.
• It lets other people thinking about working on the package know that there already is a volunteer, so

efforts may be shared.
• It lets the rest of the maintainers know more about the package than the one line description and the

usual changelog entry “Initial release” that gets posted todebian-devel-changes .

http://www.debian.org/devel/wnpp/
http://www.debian.org/devel/wnpp/

Chapter 6. Package uploads 24

• It is helpful to the people who live off unstable (and form our first line of testers). We should encourage
these people.

• The announcements give maintainers and other interested parties a better feel of what is going on, and
what is new, in the project.

6.2 Uploading a package

6.2.1 Generating the changes file

When a package is uploaded to the Debian FTP archive, it must be accompanied by a.changes file,
which gives directions to the archive maintainers for its handling. This is usually generated bydpkg-
genchanges during the normal package build process.

The changes file is a control file with the following fields:
• Format
• Date
• Source
• Binary
• Architecture
• Version
• Distribution
• Urgency
• Maintainer
• Description
• Changes
• Files

All of these fields are mandatory for a Debian upload. See the list of control fields in the Debian Policy
Manual (http://www.debian.org/doc/debian-policy/) for the contents of these fields. You
can close bugs automatically using theDescription field, see ‘When bugs are closed by new uploads’
on page46. Only theDistribution field is discussed in this section, since it relates to the archive
maintenance policies.

6.2.2 Picking a distribution

Notably, theDistribution field, which originates from thedebian/changelog file, indicates which
distribution the package is intended for. There are four possible values for this field: ‘stable’, ‘unstable’,
‘frozen’, or ‘experimental’; these values can also be combined. Or, if Debian has been frozen, and you want
to get a bug-fix release intofrozen, you would set the distribution to ‘frozen unstable’. (See ‘Uploading to
frozen’ on the facing page for more information on when to upload tofrozen.) Note that it never makes sense
to combine theexperimentaldistribution with anything else.

http://www.debian.org/doc/debian-policy/

Chapter 6. Package uploads 25

You should avoid combining ‘stable’ with others because of potential problems with library dependencies
(for your package and for the package built by the build daemons for other architecture). Also note that
setting the distribution to ‘stable’ means that the package will be placed into theproposed-updates
directory of the Debian archive for further testing before it is actually included instable. The Release Team
(which can be reached at<debian-release@lists.debian.org>) will decide if your package can
be included in stable, therefore if your changelog entry is not clear enough, you may want to explain them
why you uploaded your package to stable by sending them a short explication.

The first time a version is uploaded which corresponds to a particular upstream version, the original source
tar file should be uploaded and included in the.changes file. Subsequently, this very same tar file should
be used to build the new diffs and.dsc files, and will not need to be re-uploaded.

By default,dpkg-genchanges anddpkg-buildpackage will include the original source tar file if
and only if the Debian revision part of the source version number is 0 or 1, indicating a new upstream
version. This behaviour may be modified by using-sa to always include it or-sd to always leave it out.

If no original source is included in the upload, the original source tar-file used bydpkg-source when
constructing the.dsc file and diff to be uploadedmustbe byte-for-byte identical with the one already in
the archive. If there is some reason why this is not the case, the new version of the original source should be
uploaded, possibly by using the-sa flag.

Uploading to frozen

The Debian freeze is a crucial time for Debian. It is our chance to synchronize and stabilize our distribution
as a whole. Therefore, care must be taken when uploading tofrozen.

It is tempting to always try to get the newest release of software into the release. However, it’s much more
important that the system as a whole is stable and works as expected.

The watchword for uploading tofrozenis no new code. This is a difficult thing to quantify, so here are some
guidelines:

• Fixes for bugs of severitycritical, grave, or seriousseverity are always allowed for those packages
that must exist in the final release

• critical, grave, andseriousbug fixes are allowed for non-necessary packages but only if they don’t
add any new features

• important, normal and minor bug fixes are allowed (though discouraged) on all packages if and only
if there are no new features

• wishlist fixes are not allowed (they are, after all, not really bugs)

• documentation bug fixes are allowed, since good documentation is important

Chapter 6. Package uploads 26

Experience has shown that there is statistically a 15% chance that every bug fix will introduce a new bug.
The introduction and discovery of new bugs either delays release or weakens the final product. There is little
correlation between the severity of the original bug fixed and the severity of the bug newly introduced by
the fix.

6.2.3 Checking the package prior to upload

Before you upload your package, you should do basic testing on it. At a minimum, you should try the
following activities (you’ll need to have an older version of the same Debian package around):

• Install the package and make sure the software works, or upgrade the package from an older version
to your new version if a Debian package for it already exists.

• Run lintian over the package. You can runlintian as follows: lintian -v package-
version .changes . This will check the source package as well as the binary package. If you
don’t understand the output thatlintian generates, try adding the-i switch, which will cause
lintian to output a very verbose description of the problem.

Normally, a package shouldnot be uploaded if it causes lintian to emit errors (they will start withE).

For more information onlintian , see ‘lintian ’ on page51.

• Downgrade the package to the previous version (if one exists) – this tests thepostrm andprerm
scripts.

• Remove the package, then reinstall it.

6.2.4 Uploading toftp-master

To upload a package, you need a personal account onftp-master.debian.org , which you should
have as an official maintainer. If you usescp or rsync to transfer the files, place them into/org/ftp.
debian.org/incoming/ ; if you use anonymous FTP to upload, place them into/pub/UploadQueue/ .

Note:Do not upload toftp-master packages containing software that is export-controlled by the United
States government, nor to the overseas upload queues onchiark or erlangen . This prohibition covers
almost all cryptographic software, and even sometimes software that contains “hooks” to cryptographic
software, such as electronic mail readers that support PGP encryption and authentication. Uploads of such
software should go tonon-us (see ‘Uploading tonon-US (pandora)’ on the facing page). If you are not
sure whether U.S. export controls apply to your package, post a message to<debian-devel@lists.
debian.org> and ask.

You may also find the Debian packagedupload useful when uploading packages. This handy program is
distributed with defaults for uploading viaftp to ftp-master , chiark , anderlangen . It can also be
configured to usessh or rsync . Seedupload(1) anddupload(5) for more information.

ftp-master.debian.org

Chapter 6. Package uploads 27

After uploading your package, you can check how the archive maintenance software will process it by
runningdinstall on your changes file:

dinstall -n foo.changes

6.2.5 Uploading tonon-US (pandora)

As discussed above, export controlled software should not be uploaded toftp-master . Instead, use
scp or non-anonymous FTP to copy the package tonon-us.debian.org , placing the files in/org/
non-us.debian.org/incoming/ . By default, you can use the same account/password that works on
ftp-master .

The programdupload comes with support for uploading tonon-us ; please refer to the documentation
that comes with the program for details.

You can check your upload the same way it’s done onftp-master , with:

dinstall -n foo.changes

Note that U.S. residents or citizens are subject to restrictions on export of cryptographic software. As of this
writing, U.S. citizens are allowed to export some cryptographic software, subject to notification rules by the
U.S. Department of Commerce.

Debian policy does not prevent upload to non-US by U.S. residents or citizens, but care should be taken in
doing so. It is recommended that developers take all necessary steps to ensure that they are not breaking
current US law by doing an upload to non-US,including consulting a lawyer.

For packages in non-US main or contrib, developers should at least follow the procedure outlined by the US
Government (http://www.bxa.doc.gov/Encryption/PubAvailEncSourceCodeNofify.
html). Maintainers of non-US/non-free packages should further consult these rules on notification of export
(http://www.bxa.doc.gov/Encryption/) of non-free software.

This section is for information only and does not constitute legal advice. Again, it is strongly recommended
that U.S. citizens and residents consult a lawyer before doing uploads to non-US.

6.2.6 Uploads viachiark

If you have a slow network connection toftp-master , there are alternatives. One is to upload files to
Incoming via a upload queue in Europe onchiark . For details connect toftp://ftp.chiark.
greenend.org.uk/pub/debian/private/project/README.how-to-upload .

Note: Do not upload packages containing software that is export-controlled by the United States govern-
ment to the queue onchiark . Since this upload queue goes toftp-master , the prescription found in
‘Uploading toftp-master ’ on the preceding page applies here as well.

non-us.debian.org
http://www.bxa.doc.gov/Encryption/PubAvailEncSourceCodeNofify.html
http://www.bxa.doc.gov/Encryption/PubAvailEncSourceCodeNofify.html
http://www.bxa.doc.gov/Encryption/
ftp://ftp.chiark.greenend.org.uk/pub/debian/private/project/README.how-to-upload
ftp://ftp.chiark.greenend.org.uk/pub/debian/private/project/README.how-to-upload

Chapter 6. Package uploads 28

The programdupload comes with support for uploading tochiark ; please refer to the documentation
that comes with the program for details.

6.2.7 Uploads viaerlangen

Another upload queue is available in Germany: just upload the files via anonymous FTP toftp://ftp.
uni-erlangen.de/pub/Linux/debian/UploadQueue/ .

The upload must be a complete Debian upload, as you would put it intoftp-master ’s Incoming , i.e.,
a .changes files along with the other files mentioned in the.changes . The queue daemon also checks
that the.changes is correctly PGP-signed by a Debian developer, so that no bogus files can find their
way toftp-master via this queue. Please also make sure that theMaintainer field in the.changes
containsyour e-mail address. The address found there is used for all replies, just as onftp-master .

There’s no need to move your files into a second directory after the upload, as onchiark . And, in any case,
you should get a mail reply from the queue daemon explaining what happened to your upload. Hopefully it
should have been moved toftp-master , but in case of errors you’re notified, too.

Note:Do not upload packages containing software that is export-controlled by the United States government
to the queue onerlangen . Since this upload queue goes toftp-master , the prescription found in
‘Uploading toftp-master ’ on page26applies here as well.

The programdupload comes with support for uploading toerlangen ; please refer to the documentation
that comes with the program for details.

6.2.8 Other Upload Queues

Another upload queue is available which is based in the US, and is a good backup when there are problems
reachingftp-master . You can upload files, just as inerlangen , to ftp://samosa.debian.org/
pub/UploadQueue/ .

An upload queue is available in Japan: just upload the files via anonymous FTP toftp://master.
debian.or.jp/pub/Incoming/upload/ .

6.3 Announcing package uploads

When a package is uploaded, an announcement should be posted to one of the “debian-changes” lists. This
is now done automatically by the archive maintenance software when it runs (usually once a day). You just
need to use a recentdpkg-dev (>= 1.4.1.2). The mail generated by the archive maintenance software will
contain the PGP/GPG signed.changes files that you uploaded with your package. Previously,dupload
used to send those announcements, so please make sure that you configured yourdupload not to send
those announcements (check its documentation and look for “dinstall_runs”).

ftp://ftp.uni-erlangen.de/pub/Linux/debian/UploadQueue/
ftp://ftp.uni-erlangen.de/pub/Linux/debian/UploadQueue/
ftp://samosa.debian.org/pub/UploadQueue/
ftp://samosa.debian.org/pub/UploadQueue/
ftp://master.debian.or.jp/pub/Incoming/upload/
ftp://master.debian.or.jp/pub/Incoming/upload/

Chapter 6. Package uploads 29

If a package is released with theDistribution: set to ‘stable’, the announcement is sent to<debian-changes@
lists.debian.org> . If a package is released withDistribution: set to ‘unstable’, ‘experi-
mental’, or ‘frozen’ (when present), the announcement will be posted to<debian-devel-changes@
lists.debian.org> instead.

On occasion, it is necessary to upload a package to both thestableandunstabledistributions; this is done
by putting both distributions in theDistribution: line. In such a case the upload announcement will
go to both of the above mailing lists.

Thedupload program is clever enough to determine where the announcement should go, and will auto-
matically mail the announcement to the right list. See ‘dupload ’ on page53.

6.4 Notification that a new package has been installed

The Debian archive maintainers are responsible for handling package uploads. For the most part, uploads
are automatically handled on a daily basis by archive maintenance tools ‘dak’ (also referred to askatie or
dinstall). Specifically, updates to existing packages to the ‘unstable’ distribution are handled automat-
ically. In other cases, notably new packages, placing the uploaded package into the distribution is handled
manually. When uploads are handled manually, the change to the archive may take up to a month to occur.
Please be patient.

In any case, you will receive email notification indicating that the package has been uploaded. Please
examine this notification carefully. You may notice that the package didn’t go into the section you thought
you set it to go into. Read on for why.

6.4.1 The override file

Thedebian/control file’s Section andPriority fields do not actually specify where the file will
be placed in the archive, nor its priority. In order to retain the overall integrity of the archive, it is the archive
maintainers who have control over these fields. The values in thedebian/control file are actually just
hints.

The archive maintainers keep track of the canonical sections and priorities for packages in theoverride
file. Sometimes theoverride fileneeds correcting. Simply changing the package’scontrol file is not
going to work. Instead, you should email<override-change@debian.org> or submit a bug against
ftp.debian.org .

For more information aboutoverride files, seedpkg-scanpackages(8) , /usr/doc/debian/bug-log-mailserver.
txt , and/usr/doc/debian/bug-maint-info.txt .

Chapter 6. Package uploads 30

31

Chapter 7

Non-Maintainer Uploads (NMUs)

Under certain circumstances it is necessary for someone other than the official package maintainer to make
a release of a package. This is called a non-maintainer upload, or NMU.

Debian porters, who compile packages for different architectures, do NMUs as part of their normal porting
activity (see ‘Porting and Being Ported’ on page37). Another reason why NMUs are done is when a
Debian developers needs to fix another developers’ packages in order to address serious security problems
or crippling bugs, especially during the freeze, or when the package maintainer is unable to release a fix in
a timely fashion.

This chapter contains information providing guidelines for when and how NMUs should be done. A funda-
mental distinction is made between source and binary NMUs, which is explained in the next section.

7.1 Terminology

There are two new terms used throughout this section: “binary NMU” and “source NMU”. These terms are
used with specific technical meaning throughout this document. Both binary and source NMUs are similar,
since they involve an upload of a package by a developer who is not the official maintainer of that package.
That is why it’s anon-maintainerupload.

A source NMU is an upload of a package by a developer who is not the official maintainer, for the purposes
of fixing a bug in the package. Source NMUs always involves changes to the source (even if it is just a
change todebian/changelog). This can be either a change to the upstream source, or a change to the
Debian bits of the source.

A binary NMU is a recompilation and upload of a binary package for a new architecture. As such, it is
usually part of a porting effort. A binary NMU is a non-maintainer uploaded binary version of a package
(often for another architecture), with no source changes required. There are many cases where porters
must fix problems in the source in order to get them to compile for their target architecture; that would be

Chapter 7. Non-Maintainer Uploads (NMUs) 32

considered a source NMU rather than a binary NMU. As you can see, we don’t distinguish in terminology
between porter NMUs and non-porter NMUs.

Both classes of NMUs, source and binary, can be lumped by the term “NMU”. However, this often leads to
confusion, since most people think “source NMU” when they think “NMU”. So it’s best to be careful. In
this chapter, if I use the unqualified term “NMU”, I mean both source and binary NMUs.

7.2 Who can do an NMU

Only official, registered Debian maintainers can do binary or source NMUs. An official maintainer is some-
one who has their key in the Debian key ring. Non-developers, however, are encouraged to download the
source package and start hacking on it to fix problems; however, rather than doing an NMU, they should
just submit worthwhile patches to the Bug Tracking System. Maintainers almost always appreciate quality
patches and bug reports.

7.3 When to do a source NMU

Guidelines for when to do a source NMU depend on the target distribution, i.e., stable, unstable, or frozen.
Porters have slightly different rules than non-porters, due to their unique circumstances (see ‘When to do a
source NMU if you are a porter’ on page38).

Only critical changes or security bug fixes make it into stable. When a security bug is detected, a fixed
package should be uploaded as soon as possible. In this case, the Debian Security Managers should get in
contact with the package maintainer to make sure a fixed package is uploaded within a reasonable time (less
than 48 hours). If the package maintainer cannot provide a fixed package fast enough or if he/she cannot be
reached in time, the Security Manager may upload a fixed package (i.e., do a source NMU).

During the release freeze (see ‘Uploading tofrozen’ on page25), NMUs which fix serious or higher severity
bugs are encouraged and accepted. Even during this window, however, you should endeavor to reach the
current maintainer of the package; they might be just about to upload a fix for the problem. As with any
source NMU, the guidelines found in ‘How to do a source NMU’ on the next page need to be followed.

Bug fixes to unstable by non-maintainers are also acceptable, but only as a last resort or with permission.
Try the following steps first, and if they don’t work, it is probably OK to do an NMU:

• Make sure that the package bug is in the Debian Bug Tracking System (BTS). If not, submit a bug.

• Email the maintainer, and offer to help fix the package bug. Give it a few days.

• Go ahead and fix the bug, submitting a patch to the right bug in the BTS. Build the package and test
it as discussed in ‘Checking the package prior to upload’ on page26. Use it locally.

Chapter 7. Non-Maintainer Uploads (NMUs) 33

• Wait a couple of weeks for a response.

• Email the maintainer, asking if it is OK to do an NMU.

• Double check that your patch doesn’t have any unexpected side effects. Make sure your patch is as
small and as non-disruptive as it can be.

• Wait another week for a response.

• Go ahead and do the source NMU, as described in ‘How to do a source NMU’ on the current page.

7.4 How to do a source NMU

The following applies to porters insofar as they are playing the dual role of being both package bug-fixers
and package porters. If a porter has to change the Debian source archive, automatically their upload is a
source NMU and is subject to its rules. If a porter is simply uploading a recompiled binary package, the
rules are different; see ‘Guidelines for Porter Uploads’ on page38.

First and foremost, it is critical that NMU patches to source should be as non-disruptive as possible. Do not
do housekeeping tasks, do not change the name of modules or files, do not move directories; in general, do
not fix things which are not broken. Keep the patch as small as possible. If things bother you aesthetically,
talk to the Debian maintainer, talk to the upstream maintainer, or submit a bug. However, aesthetic changes
mustnot be made in a non-maintainer upload.

7.4.1 Source NMU version numbering

Whenever you have made a change to a package, no matter how trivial, the version number needs to change.
This enables our packing system to function.

If you are doing a non-maintainer upload (NMU), you should add a new minor version number to the
debian-revisionpart of the version number (the portion after the last hyphen). This extra minor number will
start at ‘1’. For example, consider the package ‘foo’, which is at version 1.1-3. In the archive, the source
package control file would befoo_1.1-3.dsc . The upstream version is ‘1.1’ and the Debian revision
is ‘3’. The next NMU would add a new minor number ‘.1’ to the Debian revision; the new source control
file would befoo_1.1-3.1.dsc .

The Debian revision minor number is needed to avoid stealing one of the package maintainer’s version
numbers, which might disrupt their work. It also has the benefit of making it visually clear that a package
in the archive was not made by the official maintainer.

If there is nodebian-revisioncomponent in the version number then one should be created, starting at ‘0.1’.
If it is absolutely necessary for someone other than the usual maintainer to make a release based on a new
upstream version then the person making the release should start with thedebian-revisionvalue ‘0.1’. The

Chapter 7. Non-Maintainer Uploads (NMUs) 34

usual maintainer of a package should start theirdebian-revisionnumbering at ‘1’. Note that if you do this,
you’ll have to invokedpkg-buildpackage with the-sa switch to force the build system to pick up the
new source package (normally it only looks for Debian revisions of ’0’ or ’1’ – it’s not yet clever enough to
know about ‘0.1’).

Remember, porters who are simply recompiling a package for a different architecture do not need to renum-
ber. Porters should use new version numbers if and only if they actually have to modify the source package
in some way, i.e., if they are doing a source NMU and not a binary NMU.

7.4.2 Source NMUs must have a new changelog entry

A non-maintainer doing a source NMU must create a changelog entry, describing which bugs are fixed by
the NMU, and generally why the NMU was required and what it fixed. The changelog entry will have the
non-maintainer’s email address in the log entry and the NMU version number in it.

By convention, source NMU changelog entries start with the line

* Non-maintainer upload

7.4.3 Source NMUs and the Bug Tracking System

Maintainers other than the official package maintainer should make as few changes to the package as possi-
ble, and they should always send a patch as a unified context diff (diff -u) detailing their changes to the
Bug Tracking System.

What if you are simply recompiling the package? In this case, the process is different for porters than it is
for non-porters, as mentioned above. If you are not a porter and are doing an NMU that simply requires a
recompile (i.e., a new shared library is available to be linked against, a bug was fixed indebhelper), there
must still be a changelog entry; therefore, there will be a patch. If you are a porter, you are probably just
doing a binary NMU. (Note: this leaves out in the cold porters who have to do recompiles – chalk it up as a
weakness in how we maintain our archive.)

If the source NMU (non-maintainer upload) fixes some existing bugs, the bugs in the Bug Tracking System
which are fixed need to benotified but not actuallyclosedby the non-maintainer. Technically, only the
official package maintainer or the original bug submitter are allowed to close bugs. However, the person
making the non-maintainer release must send a short message to the relevant bugs explaining that the bugs
have been fixed by the NMU. Using<control@bugs.debian.org> , the party doing the NMU should
also set the severity of the bugs fixed in the NMU to ‘fixed’. This ensures that everyone knows that the bug
was fixed in an NMU; however the bug is left open until the changes in the NMU are incorporated officially
into the package by the official package maintainer. Also, open a bug with the patches needed to fix the
problem, or make sure that one of the other (already open) bugs has the patches.

The normal maintainer will either apply the patch or employ an alternate method of fixing the problem.
Sometimes bugs are fixed independently upstream, which is another good reason to back out an NMU’s

Chapter 7. Non-Maintainer Uploads (NMUs) 35

patch. If the maintainer decides not to apply the NMU’s patch but to release a new version, the maintainer
needs to ensure that the new upstream version really fixes each problem that was fixed in the non-maintainer
release.

In addition, the normal maintainer shouldalwaysretain the entry in the changelog file documenting the
non-maintainer upload.

7.4.4 Building source NMUs

Source NMU packages are built normally. Pick a distribution using the same rules as found in ‘Picking a
distribution’ on page24. Just as described in ‘Uploading a package’ on page24, a normal changes file, etc.,
will be built. In fact, all the prescriptions from ‘Package uploads’ on page23 apply, including the need to
announce the NMU to the proper lists.

Make sure you donot change the value of the maintainer in thedebian/control file. Your name as
given in the NMU entry of thedebian/changelog file will be used for signing the changes file.

Chapter 7. Non-Maintainer Uploads (NMUs) 36

37

Chapter 8

Porting and Being Ported

Debian supports an ever-increasing number of architectures. Even if you are not a porter, and you don’t use
any architecture but one, it is part of your duty as a maintainer to be aware of issues of portability. Therefore,
even if you are not a porter, you should read most of this chapter.

Porting is the act of building Debian packages for architectures that is different from the original architecture
of the package maintainer’s binary package. It is a unique and essential activity. In fact, porters do most of
the actual compiling of Debian packages. For instance, for a singlei386 binary package, there must be a
recompile for each architecture, which is amounts to five more builds.

8.1 Being Kind to Porters

Porters have a difficult and unique task, since they are required to deal with a large volume of packages.
Ideally, every source package should build right out of the box. Unfortunately, this is often not the case.
This section contains a checklist of “gotchas” often committed by Debian maintainers – common problems
which often stymie porters, and make their jobs unnecessarily more difficult.

The first and most important watchword is to respond quickly to bug or issues raised by porters. Please treat
porters with courtesy, as if they were in fact co-maintainers of your package (which in a way, they are).

By far, most of the problems encountered by porters are caused bypackaging bugsin the source packages.
Here is a checklist of things you should check or be aware of.

1. Don’t set architecture to a value other than “all” or “any” unless you really mean it. In too many cases,
maintainers don’t follow the instructions in the Debian Policy Manual (http://www.debian.
org/doc/debian-policy/). Setting your architecture to “i386” is usually incorrect.

2. Make sure your source package is correct. Dodpkg-source -x package .dsc to make sure
your source package unpacks properly. Then, in there, try building your package from scratch with
dpkg-buildpackage .

http://www.debian.org/doc/debian-policy/
http://www.debian.org/doc/debian-policy/

Chapter 8. Porting and Being Ported 38

3. Make sure you don’t ship your source package with thedebian/files or debian/substvars
files. They should be removed by the ‘clean’ target ofdebian/rules .

4. Make sure you don’t rely on locally installed or hacked configurations or programs. For instance, you
should never be calling programs in/usr/local/bin or the like. Try not to rely on programs
be setup in a special way. Try building your package on another machine, even if it’s the same
architecture.

5. Don’t depend on the package you’re building already being installed (a sub-case of the above issue).

6. Don’t rely onegcc being available; don’t rely ongcc being a certain version.

7. Make sure your debian/rules contains separate “binary-arch” and “binary-indep” targets, as the Debian
Packaging Manual requires. Make sure that both targets work independently, that is, that you can call
the target without having called the other before. To test this, try to rundpkg-buildpackage -b .

8.2 Guidelines for Porter Uploads

If the package builds out of the box for the architecture to be ported to, you are in luck and your job is
easy. This section applies to that case; it describes how to build and upload your binary NMU so that it is
properly installed into the archive. If you do have to patch the package in order to get it to compile for the
other architecture, you are actually doing a source NMU, so consult ‘How to do a source NMU’ on page33
instead.

In a binary NMU, no real changes are being made to the source. You do not need to touch any of the files in
the source package. This includesdebian/changelog .

Sometimes you need to recompile a package against other packages which have been updated, such as
libraries. You do have to bump the version number in this case, so that the upgrade system can function
properly. Even so, these are considered binary-only NMUs – there is no need in this case for all architectures
to recompile. You should set the version number as in the case of NMU versioning, but add a “.0.” before
the the NMU version. For instance, a recompile-only NMU of the source package “foo_1.3-1” would be
numbered “foo_1.3-1.0.1”.

The way to invokedpkg-buildpackage is asdpkg-buildpackage -B -e porter-email . Of
course, setporter-emailto your email address. This will do a binary-only build of only the architecture-
dependant portions of the package, using the ‘binary-arch’ target indebian/rules .

8.2.1 When to do a source NMU if you are a porter

Porters doing a source NMU generally follow the guidelines found in ‘Non-Maintainer Uploads (NMUs)’
on page31, just like non-porters. However, it is expected that the wait cycle for a porter’s source NMU is
smaller than for a non-porter, since porters have to cope with a large quantity of packages.

Chapter 8. Porting and Being Ported 39

Again, the situation varies depending on the distribution they are uploading to. Crucial fixes (i.e., changes
need to get a source package to compile for a released-targeted architecture) can be uploaded withnowaiting
period for the ‘frozen’ distribution.

However, if you are a porter doing an NMU for ‘unstable’, the above guidelines for porting should be
followed, with two variations. Firstly, the acceptable waiting period – the time between when the bug is
submitted to the BTS and when it is OK to do an NMU – is seven days for porters working on the unstable
distribution. This period can be shortened if the problem is critical and imposes hardship on the porting
effort, at the discretion of the porter group. (Remember, none of this is Policy, just mutually agreed upon
guidelines.)

Secondly, porters doing source NMUs should make sure that the bug they submit to the BTS should be
of severity ‘serious’ or greater. This ensures that a single source package can be used to compile every
supported Debian architecture by release time. It is very important that we have one version of the binary
and source package for all architecture in order to comply with many licenses.

Porters should try to avoid patches which simply kludge around bugs in the current version of the compile
environment, kernel, or libc. Sometimes such kludges can’t be helped. If you have to kludge around
compilers bugs and the like, make sure you#ifdef your work properly; also, document your kludge so
that people know to remove it once the external problems have been fixed.

Porters may also have an unofficial location where they can put the results of their work during the waiting
period. This helps others running the port have the benefit of the porter’s work, even during the waiting
period. Of course, such locations have no official blessing or status, so buyer, beware.

8.3 Tools for Porters

There are several tools available for the porting effort. This section contains a brief introduction to these
tools; see the package documentation or references for full information.

8.3.1 quinn-diff

quinn-diff is used to locate the differences from one architecture to another. For instance, it could tell
you which packages need to be ported for architectureY, based on architectureX.

8.3.2 buildd

The buildd system is used as a distributed, client-server build distribution system. It is usually used in
conjunction withauto-builders, which are “slave” hosts which simply check out and attempt to auto-build
packages which need to be ported. There is also an email interface to the system, which allows porters to
“check out” a source package (usually one which cannot yet be autobuilt) and work on it.

Chapter 8. Porting and Being Ported 40

buildd is not yet available as a package; however, most porting efforts are either using it currently or
planning to use it in the near future. It collects a number of as yet unpackaged components which are
currently very useful and in use continually, such asandrea , sbuild andwanna-build .

Some of the data produced bybuildd which is generally useful to porters is available on the web athttp:
//buildd.debian.org/ . This data includes nightly updated information fromandrea (source de-
pendencies) andquinn-diff (packages needing recompilation).

We are very excited about this system, since it potentially has so many uses. Independent development
groups can use the system for different sub-flavors of Debian, which may or may not really be of general
interest (for instance, a flavor of Debian built with gcc bounds checking). It will also enable Debian to
recompile entire distributions quickly.

8.3.3 dpkg-cross

dpkg-cross is a tool for installing libraries and headers for cross-compiling in a way similar todpkg .
Furthermore, the functionality ofdpkg-buildpackage anddpkg-shlibdeps is enhanced to support
cross-compiling.

http://buildd.debian.org/
http://buildd.debian.org/

41

Chapter 9

Moving, Removing, Renaming, Adopting,
and Orphaning Packages

Some archive manipulation operation are not automated in the Debian upload process. These procedures
should be manually followed by maintainers. This chapter gives guidelines in what to do in these cases.

9.1 Moving packages

Sometimes a package will change its section. For instance, a package from the ‘non-free’ section might be
GPL’d in a later version, in which case, the package should be moved to ‘main’ or ‘contrib’.1

If you need to change the section for one of your packages, change the package control information to
place the package in the desired section, and re-upload the package (see the Debian Policy Manual (http:
//www.debian.org/doc/debian-policy/) for details). Carefully examine the installation log
sent to you when the package is installed into the archive. If for some reason the old location of the package
remains, file a bug againstftp.debian.org asking that the old location be removed. Give details on
what you did, since it might be a bug in the archive maintenance software.

If, on the other hand, you need to change thesubsectionof one of your packages (e.g., “devel”, “admin”),
the procedure is slightly different. Correct the subsection as found in the control file of the package, and
reupload that. Also, you’ll need to get the override file updated, as described in ‘The override file’ on
page29.

1See the Debian Policy Manual (http://www.debian.org/doc/debian-policy/) for guidelines on what section a
package belongs in.

http://www.debian.org/doc/debian-policy/
http://www.debian.org/doc/debian-policy/
http://www.debian.org/doc/debian-policy/

Chapter 9. Moving, Removing, Renaming, Adopting, and Orphaning Packages 42

9.2 Removing packages

If for some reason you want to completely remove a package (say, if it is an old compatibility library which is
not longer required), you need to file a bug againstftp.debian.org asking that the package be removed.
Make sure you indicate which distribution the package should be removed from.

If in doubt concerning whether a package is disposable, email<debian-devel@lists.debian.
org> asking for opinions. Also of interest is theapt-cache program from theapt package. When
invoked asapt-cache showpkg package , the program will show details forpackage, including re-
verse depends.

9.2.1 Removing packages fromIncoming

If you decide to remove a package fromIncoming , it is nice but not required to send a notification of that to
the appropriate announce list (either<debian-changes@lists.debian.org> or<debian-devel-changes@
lists.debian.org>).

9.3 Replacing or renaming packages

Sometimes you made a mistake naming the package and you need to rename it. In this case, you need to
follow a two-step process. First, set yourdebian/control file to replace and conflict with the obsolete
name of the package (see the Debian Policy Manual (http://www.debian.org/doc/debian-policy/)
for details). Once you’ve uploaded that package, and the package has moved into the archive, file a bug
againstftp.debian.org asking to remove the package with the obsolete name.

9.4 Orphaning a package

If you can no longer maintain a package, you need to inform the others about that, and see that the package is
marked as orphaned. you should set the package maintainer toDebian QA Group <packages@qa.debian.org >
and submit a bug report against the pseudo packagewnpp. The bug report should be titledO: package
-- short description indicating that the package is now orphaned. The severity of the bug should
be set tonormal. If you feel it’s necessary, send a copy to<debian-devel@lists.debian.org> by
putting the address in the X-Debbugs-CC: header of the message (no, don’t use CC:, because that way the
message’s subject won’t indicate the bug number).

If the package is especially crucial to Debian, you should instead submit a bug againstwnpp and title
it RFA: package -- short description and set its severity toimportant. Definitely copy the
message to debian-devel in this case, as described above.

Read instructions on the WNPP web pages (http://www.debian.org/devel/wnpp/) for more
information.

http://www.debian.org/doc/debian-policy/
http://www.debian.org/devel/wnpp/

Chapter 9. Moving, Removing, Renaming, Adopting, and Orphaning Packages 43

9.5 Adopting a package

A list of packages in need of a new maintainer is available at in the Work-Needing and Prospective Packages
list (WNPP) (http://www.debian.org/devel/wnpp/). If you wish to take over maintenance of
any of the packages listed in the WNPP, please take a look at the aforementioned page for information and
procedures.

It is not OK to simply take over a package that you feel is neglected – that would be package hijacking. You
can, of course, contact the current maintainer and ask them if you may take over the package. However,
without their assent, you may not take over the package. Even if they ignore you, that is still not grounds
to take over a package. If you really feel that a maintainer has gone AWOL (absent without leave), post a
query to<debian-private@lists.debian.org> .

If you take over an old package, you probably want to be listed as the package’s official maintainer in the bug
system. This will happen automatically once you upload a new version with an updatedMaintainer:
field, although it can take a few hours after the upload is done. If you do not expect to upload a new version
for a while, send an email to<override-change@debian.org> so that bug reports will go to you
right away.

http://www.debian.org/devel/wnpp/

Chapter 9. Moving, Removing, Renaming, Adopting, and Orphaning Packages 44

45

Chapter 10

Handling Bugs

10.1 Monitoring bugs

If you want to be a good maintainer, you should periodically check the Debian bug tracking system (BTS)
(http://www.debian.org/Bugs/) for your packages. The BTS contains all the open bugs against
your packages.

Maintainers interact with the BTS via email addresses atbugs.debian.org . Documentation on avail-
able commands can be found athttp://www.debian.org/Bugs/ , or, if you have installed thedoc-
debian package, you can look at the local files/usr/doc/debian/bug-* .

Some find it useful to get periodic reports on open bugs. You can add a cron job such as the following if you
want to get a weekly email outlining all the open bugs against your packages:

ask for weekly reports of bugs in my packages
0 17 * * fri echo "index maint maintainer-address " | mail request@bugs.debian.org

Replacemaintainer-addresswith you official Debian maintainer address.

10.2 Submitting Bugs

Often as a package maintainer, you find bugs in other packages or else have bugs reported to your packages
which need to be reassigned. The BTS instructions (http://www.debian.org/Bugs/server-control.
html) can tell you how to do this.

We encourage you to file bugs when there are problems. Try to submit the bug from a normal user account
at which you are likely to receive mail. Do not submit bugs as root.

http://www.debian.org/Bugs/
http://www.debian.org/Bugs/
http://www.debian.org/Bugs/server-control.html
http://www.debian.org/Bugs/server-control.html

Chapter 10. Handling Bugs 46

Make sure the bug is not already filed against a package. Try to do a good job reporting a bug and redirecting
it to the proper location. For extra credit, you can go through other packages, merging bugs which are
reported more than once, or setting bug severities to ‘fixed’ when they have already been fixed. Note that
when you are neither the bug submitter nor the package maintainer, you should not actually close the bug
(unless you secure permission from the maintainer).

10.3 Responding to Bugs

Make sure that any discussions you have about bugs are sent both to the original submitter of the bug, and
the bug itself (e.g.,<123@bugs.debian.org>).

You shouldneverclose bugs via the bug server ‘close’ command sent to<control@bugs.debian.
org> . If you do so, the original submitter will not receive any feedback on why the bug was closed.

10.4 When bugs are closed by new uploads

If you fix a bug in your packages, it is your responsibility as the package maintainer to close the bug when
it has been fixed. However, you should not close the bug until the package which fixes the bug has been
accepted into the Debian archive. Therefore, once you get notification that your updated package has been
installed into the archive, you can and should close the bug in the BTS.

If you are using a new version ofdpkg-dev and you do your changelog entry properly, the archive main-
tenance software will close the bugs automatically. All you have to do is follow a certain syntax in your
debian/changelog file:

acme-cannon (3.1415) unstable; urgency=low

* Frobbed with options (closes: Bug#98339)
* Added safety to prevent operator dismemberment, closes: bug#98765,

bug#98713, #98714.
* Added manpage. Closes: #98725.

Technically speaking, the following Perl regular expression is what is used:

/closes: \s*(?:bug)? \#\s* \d+(?:, \s*(?:bug)? \#\s* \d+)*/ig

The author prefers the(closes: Bug# XXX) syntax, since it stands out from the rest of the changelog
entries.

If you want to close bugs the old fashioned, manual way, it is usually sufficient to mail the.changes file
to <XXX-done@bugs.debian.org> , whereXXX is your bug number.

Chapter 10. Handling Bugs 47

10.5 Lintian reports

You should periodically get the newlintian from ‘unstable’ and check over all your packages. Alterna-
tively you can check for your maintainer email address at the online lintian report (http://lintian.
debian.org/). That report, which is updated automatically, containslintian reports against the latest
version of the distribution (usually from ’unstable’) using the latestlintian .

10.6 Reporting lots of bugs at once

Reporting a great number of bugs for the same problem on a great number of different packages – i.e., more
than 10 – is a deprecated practice. Take all possible steps to avoid submitting bulk bugs at all. For instance,
if checking for the problem can be automated, add a new check tolintian so that an error or warning is
emitted.

If you report more than 10 bugs on the same topic at once, it is recommended that you send a message to
<debian-devel@lists.debian.org> describing your intention before submitting the report. This
will allow other developers to verify that the bug is a real problem. In addition, it will help prevent a situation
in which several maintainers start filing the same bug report simultaneously.

Note that when sending lots of bugs on the same subject, you should send the bug report to<maintonly@
bugs.debian.org> so that the bug report is not forwarded to the bug distribution mailing list.

http://lintian.debian.org/
http://lintian.debian.org/

Chapter 10. Handling Bugs 48

49

Chapter 11

Interaction with Prospective Developers

This chapter describes procedures that existing Debian developers should follow when it comes to dealing
with wannabe developers.

11.1 Sponsoring packages

Sponsoring a package means uploading a package for a maintainer who is not able to do it on their own, a
new maintainer applicant. Sponsoring a package also means accepting responsibility for it.

New maintainers usually have certain difficulties creating Debian packages – this is quite understandable.
That is why the sponsor is there, to check the package and verify that it is good enough for inclusion in
Debian. (Note that if the sponsored package is new, the FTP admins will also have to inspect it before
letting it in.)

Sponsoring merely by signing the upload or just recompiling isdefinitely not recommended. You need to
build the source package just like you would build a package of your own. Remember that it doesn’t matter
that you left the prospective developer’s name both in the changelog and the control file, the upload can still
be traced to you.

If you are an application manager for a prospective developer, you can also be their sponsor. That way you
can also verify the how the applicant is handling the ‘Tasks and Skills’ part of their application.

11.2 Advocating new developers

See the page about advocating a prospective developer (http://www.debian.org/devel/join/
nm-advocate) at the Debian web site.

http://www.debian.org/devel/join/nm-advocate
http://www.debian.org/devel/join/nm-advocate

Chapter 11. Interaction with Prospective Developers 50

11.3 Handling new maintainer applications

Please see Checklist for Application Managers (http://www.debian.org/devel/join/nm-amchecklist)
at the Debian web site.

http://www.debian.org/devel/join/nm-amchecklist

51

Chapter 12

Overview of Debian Maintainer Tools

This section contains a rough overview of the tools available to maintainers. These tools are meant to help
convenience developers and free their time for critical tasks.

Some people prefer to use high-level package maintenance tools and some do not. Debian is officially ag-
nostic on this issue; any tool which gets the job done is fine. Therefore, this section is not meant to stipulate
to anyone which tools they should use or how they should go about with their duties of maintainership. Nor
is it meant to endorse any particular tool to the exclusion of a competing tool.

Most of the descriptions of these packages come from the actual package descriptions themselves. Further
information can be found in the package documentation itself.

12.1 dpkg-dev

dpkg-dev contains the tools (includingdpkg-source) required to unpack, build and upload Debian
source packages. These utilities contain the fundamental, low-level functionality required to create and
manipulated packages; as such, they are required for any Debian maintainer.

12.2 lintian

Lintian dissects Debian packages and reports bugs and policy violations. It contains automated checks for
many aspects of Debian policy as well as some checks for common errors. The use oflintian has already
been discussed in ‘Checking the package prior to upload’ on page26and ‘Lintian reports’ on page47.

Chapter 12. Overview of Debian Maintainer Tools 52

12.3 debconf

debconf provides a consistent interface to configuring packages interactively. It is user interface intede-
pendant, allowing end-users to configure packages with a text-only interface, an HTML interface, or a dialog
interface. New interfaces can be added modularly.

Many feel that this system should be used for all packages requiring interactive configuration.debconf is
not currently required by Debian Policy, however, that may change in the future.

12.4 debhelper

debhelper is a collection of programs that can be used indebian/rules to automate common tasks
related to building binary Debian packages. Programs are included to install various files into your package,
compress files, fix file permissions, integrate your package with the Debian menu system.

Unlike debmake , debhelper is broken into several small, granular commands which act in a consistent
manner. As such, it allows a greater granularity of control thandebmake .

12.5 debmake

debmake , a pre-cursor todebhelper , is a less granulardebian/rules assistant. It includes two
main programs:deb-make , which can be used to help a maintainer convert a regular (non-Debian) source
archive into a Debian source package; anddebstd , which incorporates in one big shot the same sort of
automated functions that one finds indebhelper .

The consensus is thatdebmake is now deprecated in favor ofdebhelper . However, it’s not a bug to use
debmake .

12.6 yada

yada is a new packaging helper tool with a slightly different philosophy. It uses adebian/packages
file to auto-generate other necessary files in thedebian/ subdirectory.

Note thatyada is still quite new and possibly not yet as robust as other systems.

12.7 equivs

equivs is another package for making packages. It is often suggested for local use if you need to make a
package simply to fulfill dependencies. It is also sometimes used when making “meta-packages”, which are

Chapter 12. Overview of Debian Maintainer Tools 53

packages whose only purpose is to depend on other packages.

12.8 cvs-buildpackage

cvs-buildpackage provides the capability to inject or import Debian source packages into a CVS
repository, build a Debian package from the CVS repository, and helps in integrating upstream changes into
the repository.

These utilities provide an infrastructure to facilitate the use of CVS by Debian maintainers. This allows one
to keep separate CVS branches of a package forstable, unstable, and possiblyexperimentaldistributions,
along with the other benefits of a version control system.

12.9 dupload

dupload is a package and a script to automagically upload Debian packages to the Debian archive, to log
the upload, and to send mail about the upload of a package. You can configure it for new upload locations
or methods.

12.10 fakeroot

fakeroot simulates root privileges. This enables you to build packages without being root (packages
usually want to install files with root ownership). If you havefakeroot installed, you can say, i.e.,
dpkg-buildpackage -rfakeroot as a user.

12.11 devscripts

devscripts is a package containing a few wrappers and tools which you may find helpful for maintain-
ing your Debian packages. Example scripts includedebchange , which will manipulate yourdebian/
changelog file from the command-line, anddebuild , which is a wrapper arounddpkg-buildpackage .

12.12 debget

debget is a package containing a convenient script which can be helpful in downloading files from the
Debian archive. You can use it to download source packages, for instance.

	Scope of This Document
	Applying to Become a Maintainer
	Getting started
	Registering as a Debian developer
	Debian Mentors

	Debian Developer's Duties
	Maintaining Your Debian Information
	Maintaining Your Public Key
	Going On Vacation Gracefully
	Coordination With Upstream Developers
	Managing Release Critical Bugs
	Quality Assurance Effort
	Retiring Gracefully

	Mailing Lists, Servers, and Other Machines
	Mailing lists
	Debian servers
	The master server
	The ftp-master server
	The WWW server
	The CVS server
	Mirrors of Debian servers

	Other Debian Machines

	The Debian Archive
	Overview
	Sections
	Architectures
	Subsections
	Packages
	Distribution directories
	Stable, testing, unstable, and sometimes frozen
	Experimental

	Release code names

	Package uploads
	Announcing new packages
	Uploading a package
	Generating the changes file
	Picking a distribution
	Checking the package prior to upload
	Uploading to ftp-master
	Uploading to non-US (pandora)
	Uploads via chiark
	Uploads via erlangen
	Other Upload Queues

	Announcing package uploads
	Notification that a new package has been installed
	The override file

	Non-Maintainer Uploads (NMUs)
	Terminology
	Who can do an NMU
	When to do a source NMU
	How to do a source NMU
	Source NMU version numbering
	Source NMUs must have a new changelog entry
	Source NMUs and the Bug Tracking System
	Building source NMUs

	Porting and Being Ported
	Being Kind to Porters
	Guidelines for Porter Uploads
	When to do a source NMU if you are a porter

	Tools for Porters
	quinn-diff
	buildd
	dpkg-cross

	Moving, Removing, Renaming, Adopting, and Orphaning Packages
	Moving packages
	Removing packages
	Removing packages from Incoming

	Replacing or renaming packages
	Orphaning a package
	Adopting a package

	Handling Bugs
	Monitoring bugs
	Submitting Bugs
	Responding to Bugs
	When bugs are closed by new uploads
	Lintian reports
	Reporting lots of bugs at once

	Interaction with Prospective Developers
	Sponsoring packages
	Advocating new developers
	Handling new maintainer applications

	Overview of Debian Maintainer Tools
	dpkg-dev
	lintian
	debconf
	debhelper
	debmake
	yada
	equivs
	cvs-buildpackage
	dupload
	fakeroot
	devscripts
	debget

