
Restricted Execution HOWTO
Release 2.0

A.M. Kuchling

April 17, 2002

akuchlin@mems-exchange.org

Abstract

Python provides a restricted execution mode for running untrusted code that will prevent the code from performing
dangerous operations. This HOWTO explains how to use restricted execution mode, and how to customize the
restricted environment for your application. It aims to provide a gentler introduction than the corresponding section
in the Python Library Reference.

This document is available in several formats, including PostScript, PDF, HTML and plain ASCII, from the
Python HOWTO page athttp://www.python.org/doc/howto/.

Contents

1 Basic use ofRExec 1

2 Frequently Asked Questions 3

3 Customizing The Restricted Environment 6
3.1 Inserting Variables . 6
3.2 Allowing Access to Unrestricted Objects. 7
3.3 Modifying Built-ins . 7

4 References 8

5 Version History 8

1 Basic use of RExec

For some applications, it’s desirable to execute chunks of Python code that come from an outside source. The most
obvious example is a Web browser such as Grail, which can download and execute applets written in Python.

An obvious danger of downloading and running code from anywhere is that someone might write a malicious applet
that appears to be harmless, but silently erases files, makes copies of sensitive data, or gives the applet’s author a
back door into your system. The solution is to run the code in a restricted environment, where it’s prevented from
performing any operations that could be used maliciously.

Java does this by using the Java Virtual Machine, which executes Java bytecode. The virtual machine, or VM, has
complete control over the running applet, and any dangerous operations must go through the VM in order to be

performed. The VM can therefore trap suspicious activity, and stop the applet’s execution, if a strict security policy is
used, or ask the user if the operation should be permitted, if the policy is somewhat looser.

Python already has a virtual machine that executes Python byte codes, so creating a restricted execution environment
simply requires sealing off dangerous built-in functions such asopen() , and dangerous modules, such as thesocket
module. This can be done by creating new namespaces, removing any dangerous functions, and forcing code to be
executed in those namespaces. While a simple idea, in practice it’s fairly complicated to implement. Luckily, the
required features have been present in Python for a while, and it’s already been implemented for you as a standard
module.

Code for using a restricted execution environment is in the ‘rexec’ module. The base class is calledRExec; in a later
section of this HOWTO, we’ll show you how to create your own subclasses ofRExec to customize the functions and
modules that are available. Here’s the documentation for creating a newRExec instance:

RExec([hooks], [verbose])
Returns aRExec instance. Theverboseparameter is a Boolean value, defaulting to false. If true, theRExec
instance will execute in verbose mode, which will print a debugging message when modules are imported, as if
the-v option was given to the Python interpreter.

Thehooksparameter can be an instance of theRHooks class, or of some subclass ofRHooks; a default instance
will be used if the parameter is omitted. This is only required when creating particularly exotic restricted
environments that import modules in new ways. If you need to use this, you’ll have to consult the source code
(or Guido) for a complete picture of what’s going on.

The RExec instance hasr exec() , r eval() , and r execfile() functions, which do the same thing as
Python’s built-inexec() , eval() , andexecfile() functions, performing them in the restricted environment.
(There are alsos exec() , s eval() , ands execfile() methods which replace the restricted environment’s
standard input, output, and error files withStringIO objects that allow you to control the input and capture any
output generated.)

Here’s a sample usage of a restricted environment. First, theRExec instance has to be created.

r_env = rexec.RExec()

Now, we can execute code and evaluate expressions in the environment:

r_env.r_exec(’import string’)
expr = ’string.upper("This is a test")’
print r_env.r_eval(expr)

The first line executes a statement, importing thestring module. Since it’s considered a safe module, the operation
succeeds. The second and third lines create a string containing an expression, and evaluates the expression in the
restricted environment; it prints out ‘THIS IS A TEST ’, as you’d expect.

Unsafe operations trigger an exception. For example:

r_env.r_exec(’import socket’)

The previous line will cause anImportError exception to be raised, with an associated string value that reads
”untrusted dynamic module:socket”. Trying to open a file for writing is also forbidden:

r_env.r_exec(’file = open("/tmp/a.out", "w")’)

2 1 Basic use of RExec

This will raise anIOError exception, with an assocated string value that reads ”can’t open files for writing in
restricted mode”. The restricted code can catch the exception in atry...except block and continue running; this
is useful for writing code which works in both restricted and unrestricted mode. Opening files for reading will work,
however.

Exactly what restrictions does the baseRExec impose? It limits the modules that can be imported to the following
safe list:

audioop, array, binascii, cmath, errno, imageop,
marshal, math, md5, operator, parser, regex,
pcre, rotor, select, strop, struct, time

In general, these are modules that can’t affect anything outside of the executing code; they allow various forms of
computation, but don’t allow operations that change the filesystem or use network connections to other machines.
(Thepcre module may be unfamiliar. It’s an internal module used by there module, so restricted code can still use
there to perform regular expression matches.)

It also restricts the variables and functions that are available from thesys andos modules. Thesys module only
contains the following symbols:

ps1, ps2, copyright, version, platform, exit, maxint

Theos module is reduced to the following functions:

error, fstat, listdir, lstat, readlink,
stat, times, uname, getpid, getppid,
getcwd, getuid, getgid, geteuid, getegid

Note that restricted code has some read-only access to the filesystem via functions likeos.stat andos.readlink ;
if you wish to forbid all access to the filename, these functions must be removed.

In restricted mode, there are various attributes of function and class objects that are no longer accessible: the
dict attribute of class, instance and module objects; theself attribute of method objects; and most

of the attributes of function objects, namelyfunc code , func defaults , func doc , func globals , and
func name.

The import () and reload() functions are replaced by versions which implement the above restrictions.
Finally, Python’s usualopen() function is removed and replaced by a restricted version that only allows opening
files for reading.

To change any of these policies, whether to be stricter or looser, see the section below on customizing the restricted
environment.

2 Frequently Asked Questions

How do I guard against denial-of-service attacks? Or, how do I keep restricted code from consuming a lot of memory?

Even if restricted code can’t open sockets or write files, it can still cause problems by entering an infinite loop or
consuming lots of memory; this is as easy as codingwhile 1: pass or ’a’ * 12345678901 . Unfortunately,
there’s no way at present to prevent restricted code from doing this. The Python process may therefore encounter a
MemoryError exception, loop forever, or be killed by the operating system.

One solution would be to performos.fork() to get a child process running the interpreter. The child could then

3

use theresource module to set limits on the amount of memory, stack space, and CPU time it can consume, and
run the restricted code. In the meantime, the parent process can set a timeout and wait for the child to return its results;
if the child takes too long, the parent can conclude that the restricted code looped forever, and kill the child process.

If restricted code returns a class instance viar eval() , can that class instance do nasty things if unrestricted code
calls its methods?

You might be worried about the handling of values returned byr eval() . For example, let’s say your program does
this:

value = r_env.r_eval(expression)
print str(value)

If value is a class instance, and has astr method, that method will get called by thestr() function. Is it
possible for the restricted code to return a class instance where thestr function does something nasty? Does
this provide a way for restricted code to smuggle out code that gets run without restrictions?

The answer is no. If restricted code returns a class instance, or a function, then, despite being called by unrestricted
code, those functions will always be executed in the restricted environment. You can see why if you follow this little
exercise. Run the interpreter in interactive mode, and create a sample class with a single method.

>>> class C:
... def f(self): print "Hi!"
...

Now, look at the attributes of the unbound methodC.f :

>>> dir(C.f)
[’__doc__’, ’__name__’, ’im_class’, ’im_func’, ’im_self’]

im func is the attribute we’re interested in; it contains the actual function for the method. Look at the function’s
attributes using thedir() built-in function, and then look at thefunc globals attribute.

>>> dir(C.f.im_func)
[’__doc__’, ’__name__’, ’func_code’, ’func_defaults’, ’func_doc’,

’func_globals’, ’func_name’]
>>> C.f.im_func.func_globals
{’__doc__’: None, ’__name__’: ’__main__’,

’__builtins__’: <module ’__builtin__’>,
’f’: <function f at 1201a68b0>,
’C’: <class __main__.C at 1201b35e0>,
’a’: <__main__.C instance at 1201a6b10>}

See how the function contains attributes for itsbuiltins module? This means that, wherever it goes, the
function will always use the same builtin module, namely the one provided by the restricted environment.

This means that the function’s module scope is limited to that of the restricted environment; it has no way to access
any variables or methods in the unrestricted environment that is calling into the restricted environment.

4 2 Frequently Asked Questions

r_env.r_exec(’def f(): g()\n’)
f = r_env.r_eval(’f’)
def g(): print "I’m unrestricted."

If you execute thef() function in the unrestricted module, it will fail with aNameError exception, becausef()
doesn’t have access to the unrestricted namespace. To make this work, you’d must insertg into the restricted names-
pace. Be careful when doing this, sinceg will be executed without restrictions; you have to be sure thatg is a function
that can’t be used to do any damage. (Or is an instance with no methods that do anything dangerous. Or is a module
containing no dangerous functions. You get the idea.)

What happens if restricted code raises an exception?

Therexec module doesn’t do anything special for exceptions raised by restricted code; they’ll be propagated up the
call stack until atry...except statement is found that catches it. If no exception handler is found, the interpreter
will print a traceback and exit, which is its usual behaviour. To prevent untrusted code from terminating the program,
you should surround calls tor exec() , r execfile() , etc. with atry...except statement.

Python 1.5 introduced exceptions that could be classes; for more information about this new feature, consult
http://www.python.org/doc/essays/stdexceptions.html. Class-based exceptions present a problem; the separation be-
tween restricted and unrestricted namespaces may cause confusion. Consider this example code, suggested by Jeff
Rush.

t1.py:

t1.py

from rexec import RHooks, RExec
from t2 import MyException
r= RExec()

print ’MyException class:’, repr(MyException)
try:

r.r_execfile(’t3.py’)
except MyException, args:

print ’Got MyException in t3.py’
except:

print ’Missed MyException "%s" in t3.py’ % repr(MyException)

t2.py

#t2.py

class MyException(Exception): pass
def myfunc():

print ’Raising’, ‘MyException‘
raise MyException, 5

print ’t2 module initialized’

t3.py:

5

#t3.py
import sys
from t2 import MyException, myfunc
myfunc()

So, ‘t1.py’ imports theMyException class from ‘t2.py’, and then executes some restricted code that also imports
‘ t2.py’ and raisesMyException . However, because of the separation between restricted and unrestricted code,
t2.py is actually imported twice, once in each mode. Therefore two distinct class objects are created forMyExcep-
tion , and theexcept statement doesn’t catch the exception because it seems to be of the wrong class.

The solution is to modify ‘t1.py’ to pluck the class object out of the restricted environment, instead of importing it.
The following code will do the job, if added tot1.py :

module = r.add_module(’__main__’)
mod_dict = module.__dict__
MyException = mod_dict[’MyException’]

The first two lines simply get the dictionary for the main module; this is a usage pattern discussed above. The
last line simply gets the value corresponding to ’MyException’, which will be the class object forMyException .

3 Customizing The Restricted Environment

3.1 Inserting Variables

While restricted code may be completely self-contained, it’s common for it to require other data: perhaps a tuple listing
various available plug-ins, or a dictionary mapping symbols to values. For simple Python data types, such as numbers
and strings, the natural solution is to insert variables into one of the namespaces used by the restricted environment,
binding the desired variable name to the value.

Continuing from the examples above, you can get the dictionary corresponding to the restricted module namedmod-
ule name with the following code:

module = r_env.add_module(module_name)
mod_dict = module.__dict__

Despite its name, theadd module() method actually only adds the module if it doesn’t already exist; it returns the
corresponding module object, whether or not the module had to be created.

Most commonly, you’ll insert variable bindings into themain or builtins module, so these will be the
most frequent values ofmodule name.

Once you have the module’s dictionary, you need only insert a key/value pair for the desired variable name and value.
For example, to add ausername variable:

mod_dict[’username’] = "Kate Bush"

Restricted code will then have access to this variable.

6 3 Customizing The Restricted Environment

3.2 Allowing Access to Unrestricted Objects

Often, the code being executed will need access to various objects that exist outside the restricted environment. For
example, an applet should be able to read some attributes of the object representing the browser, or needs access to the
Tkinter module to provide a GUI display. But the browser object, or theTkinter module aren’t safe, so what can
be done?

The solution is in theBastion module, which lets you create class instances that represent some other Python object,
but deny access to certain sensitive attributes or methods.

Bastion (object, [filter], [name], [class])
Return aBastion instance protecting the class instanceobject. Any attempt to access one of the object’s
attributes will have to be approved by thefilter function; if the access is denied anAttributeError exception
will be raised.

If present,filter must be a function that accepts a string containing an attribute name, and returns true if access
to that attribute will be permitted; iffilter returns false, the access is denied. The default filter denies access to
any function beginning with an underscore ‘’. The bastion’s string representation will be<Bastion for
name> if a value fornameis provided; otherwise,repr(object) will be used.

class, if present, would be a subclass ofBastionClass ; see the code in ‘bastion.py’ for the details. Overriding
the defaultBastionClass will rarely be required.

So, to safely make an object available to restricted code, create aBastion object protecting it, and insert theBas-
tion instance into the restricted environment’s namespace.

For example, the following code will create a bastion for an instance, namedS, that simulates a dictionary. We want
restricted code to be able to set and retrieve values fromS, but no other attributes or methods should be accessible.

import Bastion
maindict = r_env.modules[’__main__’].__dict__
maindict[’S’] = Bastion.Bastion(SS,

filter = lambda name: name in [’__getitem__’, ’__setitem__’])

3.3 Modifying Built-ins

Often you’ll wish to customize the restricted environment in various ways, most commonly by adding or subtracting
variables or functions from the modules available. At a more advanced level, you might wish to write replacements
for existing functions; for example, a Web browser that executes Python applets would have an import function that
allows retrieving modules via HTTP and importing them.

An easy way to add or remove functions is to create theRExec instance, get the namespace dictionary for the desired
module, and add or delete the desired function. For example, theRExec class provides a restrictedopen() that
allows opening files for reading. If you wish to disallow this, you can simply delete ’open’ from theRExec instance’s

builtin module.

module = r_env.add_module(’__builtin__’)
mod_dict = module.__dict__
del mod_dict[’open’]

(This isn’t enough to prevent code from accessing the filesystem; theRExec class also allows access via some of the
functions in theposix module, which is usually aliased to theos module. See below for how to change this.)

This is fine if only a single function is being added or removed, but for more complicated changes, subclassing the
RExec class is a better idea.

3.2 Allowing Access to Unrestricted Objects 7

Subclassing can potentially be quite simple. TheRExec class defines some class attributes that are used to initialize
the restricted versions of modules such asos andsys . Changing the environment’s policy then requires just changing
the class attribute in your subclass. For example, the default environment allows restricted code to use theposix
module to get its process and group ID. If you decide to disallow this, you can do it with the following custom class:

class MyRExec(rexec.RExec):
ok_posix_names = (’error’, ’fstat’, ’listdir’, ’lstat’, ’readlink’,

’stat’, ’times’, ’uname’)

More elaborate customizations may require overriding one of the methods called to create the corresponding mod-
ule. The functions to be overridden aremake builtin , make main , make osname, andmake sys . The
r import , r open , andr reload methods are made available to restricted code, so by overriding these func-
tions, you can change the capabilities available.

For example, defining a new import function requires overridingr import :

class MyRExec(rexec.RExec):
def r_import(self, mname, globals={}, locals={}, fromlist=[]):

raise ImportError, "No imports allowed--ever"

Obviously, a less trivial function could import modules using HTTP, or do something else of interest.

4 References

See some of the papers on the Knowbot Programming Environment on CNRI’s publications page: “Knowbot
programming: System support for mobile agents”, athttp://www.cnri.reston.va.us/home/koe/papers/iwooos-
full.html, and “Using the Knowbot Operating Environment in a Wide-Area Network”, at
http://www.cnri.reston.va.us/home/koe/papers/mos.html.

For information on Java’s security model, consult the Java Security FAQ athttp://java.sun.com/sfaq/index.html.

Perl supports similar features, via a software package called Penguin developed by Felix Gallo. Hum-
berto Ortiz Zuazaga wrote a paper called ”The Penguin Model for Secure Distributed Internet Scripting”, at
http://www.hpcf.upr.edu/ humberto/documents/penguin-safe-scripting.html. Thanks to Fred Drake for bringing it to
my attention.

Work has also been done on Safe-Tcl; see “The Safe-Tcl Security Model”, by Jacob Y. Levy, Laurent Demailly, John
K. Ousterhout, and Brent B. Welch, in the Proceedings of the 1998 USENIX Annual Technical Conference. Usenix
members can access the paper online athttp://www.usenix.org/publications/library/proceedings/usenix98/levy.html.

The Janus project provides a secure environment for untrusted helper applications by trapping unsafe system calls.
The project page ishttp://www.cs.berkeley.edu/ daw/janus/. Thanks to Paul Prescod for suggesting it.

Can you suggest other links, or some academic references, for this section?

5 Version History

Sep. 12, 1998: Minor revisions and added the reference to the Janus project.

Feb. 26, 1998: First version. Suggestions are welcome.

Mar. 16, 1998: Made some revisions suggested by Jeff Rush. Some minor changes and clarifications, and a sizable
section on exceptions added.

8 5 Version History

Oct. 4, 2000: Checked with Python 2.0. Minor rewrites and fixes made. Version number increased to 2.0.

9

	1 Basic use of RExec
	2 Frequently Asked Questions
	3 Customizing The Restricted Environment
	3.1 Inserting Variables
	3.2 Allowing Access to Unrestricted Objects
	3.3 Modifying Built-ins

	4 References
	5 Version History

