Web Analytics

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
مثلث - ويكيبيديا

مثلث

من ويكيبيديا، الموسوعة الحرة

المثلث هو أحد الاشكال الاساسية في الهندسة.و هو شكل ثنائي الأبعاد مكون من ثلاثة رؤوس تصل بينها ثلاثة اضلاع، التي هي عبارة عن قطع مستقيمة.

فهرست

[تحرير] أنواع المثلثات

من الممكن تصنيف المثلثات تبعا لاطوال اضلاعها كما يلي:

  • مثلث متساوي الأضلاع: وهو مثلث أضلاعه متساوية. جميع زوايا المثلث متساوي الاضلاع متساوية أيضا، وقيمتها 60 درجة.
  • مثلث متساوي الساقين: وهو مثلث فيه ضلعان متساويان. الزاويتان المقابلتان لهذين الضلعين تكونان متساويتان أيضا.
  • مثلث مختلف الأضلاع: وهو مثلث أطوال أضلاعه مختلفة. زوايا هذا المثلث تكون مختلفة القيم أيضا.
مثلث متساوي الاضلاع         مثلث متساوي الساقين     مثلث مختلف الاضلاع
متساوي الاضلاع         متساوي الساقين     مختلف الاضلاع

كما يمكن تصنيف المثلثات تبعا لقياس أكبر زاوية في المثلث:

  • مثلث قائم: له زاوية قياسها 90 درجة (زاوية قائمة)، يدعى الضلع المقابل للزاوية القائمة بالوتر، وهو أطول أضلاع هذا المثلث.
  • مثلث منفرج الزاوية: له زاوية قياسها أكبر من 90 درجة (زاوية منفرجة).
  • مثلث حاد الزوايا: كل زواياه قياسها أصغر من 90 درجة (زاوية حادة).
مثلث قائم     مثلث منفرج         مثلث حاد
قائم     منفرج         حاد

[تحرير] حقائق عن المثلثات

مثلث  
مثلث مع رموز عناصره

[تحرير] تشابه مثلثين

يقال عن مثلثين انهما متشابهين اذا كانت الزوايا المتقابلة من كل منهما متساوية، اي عندما ينتج احدهما عن الاخر بتكبيره او تصغيره. ان اطوال اضلاع المثلثين المتشابهين متناسبة، اي انه اذا كان طول اقصر اضلاع المثلث الاول هو ضعفا طول اقصر اضلاع المثلث الثاني، فان طول كل من الضلعين الاطول و المتوسط من المثلث الاول هو ضعفا طولي لضلعين الاطول و المتوسط من المثلث الثاني ايضا، و بالتالي فان النسبة بين طولي الضلعين الاقصر و الاطول في المثلث الاول مساوية للنسبة بين طولي الضلعين الاقصر و الاطول في المثلث الثاني.

[تحرير] نظرية فيثاغورث

واحدة من النظريات الاساسية في المثلثات هي نظرية فيثاغورث و التي تنص على انه في المثلث القائم، مربع طول الوتر (ا َ) يساوي الى مجموع مربعي طولي الضلعين القائمين (ب َ، ج َ)، اي:

د َ² = ب َ² + ج َ²

مما يعني ان معرفة طولي ضلعين من المثلث القائم، كاف لمعرفة طول الضلع الثالث:

من الممكن تعميم نظرية فيثاغورث لتشمل اي مثلث عبر قانون التجيب:

د َ² = ب َ² + ج َ² - 2 ب َ ج َ تجب د

و هو صحيح من اجل كل المثلثات حتى و لو لم تكن د قائمة.

سؤال:هل تبقى النظرية صحيحة في حالة ان تكون الاشكال المقامة مضلعات منتظمة اخرى مثل مضلع ثلاثي:أو خماسي أو سداسي،...الخ

[تحرير] مساحة المثلث

تعطى مساحة المثلث بالقانون:

سط = ق × ع / 2

حيث ان ق هي طول احدى اضلاع المثلث (القاعدة)، و ع هو طول العمود النازل على هذا الضلع من الرأس المقابل له (الارتفاع).

من الممكن البرهان على ذلك من خلال الشكل التالي:

حساب مساحة المثلث هندسيا
  يحول المثلث اولا لمتوازي اضلاع
مساحته ضعف مساحة المثلث، ثم الى مستطيل.

مثلث أحد الأشكالِ الأساسيةِ في هندسة: شكل ثنائي الأبعاد بثلاثة قِمَم وثلاثة جوانبِ بشكل خطوط مستقيمة .

[تحرير] أنواع المثلثاتِ

المثلثات يُمْكِنُ أَنْ تُصنّفَ طبقاً للأطوالِ النسبيةِ مِنْ جوانبِهم:

  • في مثلث متساوي الأضلاع كُلّ الجوانب مِنْ الطولِ المساويِ. مثلث متساوي الأضلاع أيضاً متساوي الزوايا ، وبمعنى آخر: . كُلّ داخليه زاوية مساوية &mdash؛ يعني، 60 &deg؛ ؛ هو a مضلع منتظم
  • في مثلث متساوي الساقين جانبان مِنْ الطولِ المساويِ. مثلث متساوي الساقين لَهُ زاويتان داخليتانُ مساويتانُ أيضاً.
  • في مثلث مختلف الزوايا كُلّ الجوانب لَها أطوالُ مختلفةُ. إنّ الزوايا الداخليةَ في a scalene مثلث جميعاً مختلف.

المثلثات يُمْكِنُ أيضاً أَنْ تُصنّفَ طبقاً لحجمِ زاويتِهم الداخليةِ الأكبرِ، وَصفَ تحت إستعمال درجة مِنْ القوسِ.

  • أي مثلث قائم (أَو مثلث قائم الزاوية ) عِنْدَهُ 90 واحد &deg؛ الزاوية الداخلية (a زاوية قائمة). الجانب قبالة الزاوية القائمة وتر زاوية قائمة ؛ هو الجانبُ الأطولُ في المثلث القائمِ. إنّ الجانبانَ الآخرَ سيقان المثلثِ.
  • مثلث منفرج عِنْدَهُ زاويةُ داخليةُ واحدة أكبرُ مِنْ 90 &deg؛ ( زاوية منفرجة).
  • مثلث حادّ عِنْدَهُ زوايا داخليةُ التي جميعاً أصغر مِنْ 90 &deg؛ (ثلاثة زاوية حادة ).



رباعي الأضلاع


[تحرير] اقرأ ايضا


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -