Bayesian adaptive dual control of deep brain stimulation in a computational model of Parkinson’s disease

by Logan L. Grado, Matthew D. Johnson, Theoden I. Netoff

In this paper, we present a novel Bayesian adaptive dual controller (ADC) for autonomously programming deep brain stimulation devices. We evaluated the Bayesian ADC’s performance in the context of reducing beta power in a computational model of Parkinson’s disease, in which it was tasked with finding the set of stimulation parameters which optimally reduced beta power as fast as possible. Here, the Bayesian ADC has dual goals: (a) to minimize beta power by exploiting the best parameters found so far, and (b) to explore the space to find better parameters, thus allowing for better control in the future. The Bayesian ADC is composed of two parts: an inner parameterized feedback stimulator and an outer parameter adjustment loop. The inner loop operates on a short time scale, delivering stimulus based upon the phase and power of the beta oscillation. The outer loop operates on a long time scale, observing the effects of the stimulation parameters and using Bayesian optimization to intelligently select new parameters to minimize the beta power. We show that the Bayesian ADC can efficiently optimize stimulation parameters, and is superior to other optimization algorithms. The Bayesian ADC provides a robust and general framework for tuning stimulation parameters, can be adapted to use any feedback signal, and is applicable across diseases and stimulator designs.

Tratto da:
Note sul Copyright: Articles and accompanying materials published by PLOS on the PLOS Sites, unless otherwise indicated, are licensed by the respective authors of such articles for use and distribution by you subject to citation of the original source in accordance with the Creative Commons Attribution (CC BY) license.