Archivi categoria: PLOS

Loss of cytoplasmic incompatibility in <i>Wolbachia</i>-infected <i>Aedes aegypti</i> under field conditions

by Perran A. Ross, Scott A. Ritchie, Jason K. Axford, Ary A. Hoffmann

Wolbachia bacteria are now being introduced into Aedes aegypti mosquito populations for dengue control. When Wolbachia infections are at a high frequency, they influence the local transmission of dengue by direct virus blocking as well as deleterious effects on vector mosquito populations. However, the effectiveness of this strategy could be influenced by environmental temperatures that decrease Wolbachia density, thereby reducing the ability of Wolbachia to invade and persist in the population and block viruses. We reared wMel-infected Ae. aegypti larvae in the field during the wet season in Cairns, North Queensland. Containers placed in the shade produced mosquitoes with a high Wolbachia density and little impact on cytoplasmic incompatibility. However, in 50% shade where temperatures reached 39°C during the day, wMel-infected males partially lost their ability to induce cytoplasmic incompatibility and females had greatly reduced egg hatch when crossed to infected males. In a second experiment under somewhat hotter conditions (>40°C in 50% shade), field-reared wMel-infected females had their egg hatch reduced to 25% when crossed to field-reared wMel-infected males. Wolbachia density was reduced in 50% shade for both sexes in both experiments, with some mosquitoes cleared of their Wolbachia infections entirely. To investigate the critical temperature range for the loss of Wolbachia infections, we held Ae. aegypti eggs in thermocyclers for one week at a range of cyclical temperatures. Adult wMel density declined when eggs were held at 26–36°C or above with complete loss at 30–40°C, while the density of wAlbB remained high until temperatures were lethal. These findings suggest that high temperature effects on Wolbachia are potentially substantial when breeding containers are exposed to partial sunlight but not shade. Heat stress could reduce the ability of Wolbachia infections to invade mosquito populations in some locations and may compromise the ability of Wolbachia to block virus transmission in the field. Temperature effects may also have an ecological impact on mosquito populations given that a proportion of the population becomes self-incompatible.

Tratto da: www.plos.org
Note sul Copyright: Articles and accompanying materials published by PLOS on the PLOS Sites, unless otherwise indicated, are licensed by the respective authors of such articles for use and distribution by you subject to citation of the original source in accordance with the Creative Commons Attribution (CC BY) license.

Prevalence and genetic diversity of <i>Burkholderia pseudomallei</i> isolates in the environment near a patient’s residence in Northeast Thailand

by Rathanin Seng, Natnaree Saiprom, Rungnapa Phunpang, Christine Joy Baltazar, Sarika Boontawee, Thanatchanan Thodthasri, Wirayut Silakun, Narisara Chantratita

Background

Burkholderia pseudomallei is the causative agent of melioidosis, a severe infectious disease in tropical regions. It is necessary to understand the risk of acquiring this infection from the environment.

Methodology /Principal Findings

The prevalence, concentration and genetic diversity of B. pseudomallei isolates collected from two sites in Buriram, Northeast Thailand were investigated. Forty-four environmental samples (18 from soil, 14 from rice rhizosphere, and 12 from water) were collected; of those 44 samples, 19 were collected from near a patient’s residence and 25 from suspected exposure sites and compared with 10 clinical isolates of the patient. Quantitative culture was performed, and B. pseudomallei was identified using the latex agglutination test and matrix-laser absorption ionisation mass spectrometry. Genotyping was performed in 162 colonies from clinical (N = 10) and environmental samples (N = 152) using pulse-field gel electrophoresis (PFGE) followed by multi-locus sequence typing (MLST) of the clinical strain. B. pseudomallei was detected in 11 of the 44 environmental samples (1 from soil, 4 from rice rhizosphere, and 6 from water). The bacterial count in the positive soil sample was 115 CFU/g. The mean concentrations ± SDs of B. pseudomallei in the positive water and rhizosphere samples were 5.1 ± 5.5 CFU/ml and 80 ± 49 CFU/g, respectively. Six water samples with positive results were collected from a pond and water sources for drinking and daily use. All colonies isolated from the patient shared the same PFGE type (PT) indicating monoclonal infection of ST99. Although the 152 colonies from environmental isolates exhibited 25 PTs, none were identical to the patient’s isolates. PT5 and PT7 were most common genotype among the environmental samples.

Conclusions/Significance

Diverse genotypes of B. pseudomallei were prevalent in the environment. However, the patient may have been infected with a low-density genotype. Intervention strategies for preventing B. pseudomallei infection are required.

Tratto da: www.plos.org
Note sul Copyright: Articles and accompanying materials published by PLOS on the PLOS Sites, unless otherwise indicated, are licensed by the respective authors of such articles for use and distribution by you subject to citation of the original source in accordance with the Creative Commons Attribution (CC BY) license.

Genetic landscape and macro-evolution of co-circulating Coxsackieviruses A and Vaccine-derived Polioviruses in the Democratic Republic of Congo, 2008-2013

by Serge Alain Sadeuh-Mba, Hugo Kavunga-Membo, Marie-Line Joffret, Riziki Yogolelo, Marie Claire Endegue-Zanga, Maël Bessaud, Richard Njouom, Jean-Jacques Muyembe-Tamfu, Francis Delpeyroux

Enteroviruses (EVs) are among the most common viruses infecting humans worldwide but only a few Non-Polio Enterovirus (NPEV) isolates have been characterized in the Democratic Republic of Congo (DR Congo). Moreover, circulating vaccine-derived polioviruses (PVs) [cVDPVs] isolated during multiple outbreaks in DR Congo from 2004 to 2018 have been characterized so far only by the sequences of their VP1 capsid coding gene. This study was carried to i) investigate the circulation and genetic diversity of NPEV and polio vaccine isolates recovered from healthy children and Acute Flaccid Paralysis (AFP) patients, ii) evaluate the occurrence of genetic recombination among EVs belonging to the Enterovirus C species (including PVs) and iii) identify the virological factors favoring multiple emergences of cVDPVs in DR Congo. The biological material considered in this study included i) a collection of 91 Sabin-like PVs, 54 cVDPVs and 150 NPEVs isolated from AFP patients between 2008 and 2012 in DR Congo and iii) a collection of 330 stool specimens collected from healthy children in 2013 in the Kasai Oriental and Maniema provinces of DR Congo. Studied virus isolates were sequenced in four distinct sub-genomic regions 5’-UTR, VP1, 2CATPase and 3Dpol. Resulting sequences were compared through comparative phylogenetic analyses. Virus isolation showed that 19.1% (63/330) healthy children were infected by EVs including 17.9% (59/330) of NPEVs and 1.2% (4/330) of type 3 Sabin-like PVs. Only one EV-C type, EV-C99 was identified among the NPEV collection from AFP patients whereas 27.5% of the 69 NPEV isolates typed in healthy children belonged to the EV-C species: CV-A13 (13/69), A20 (5/69) and A17 (1/69). Interestingly, 50 of the 54 cVDPVs featured recombinant genomes containing exogenous sequences in at least one of the targeted non-structural regions of their genomes: 5’UTR, 2CATPase and 3Dpol. Some of these non-vaccine sequences of the recombinant cVDPVs were strikingly related to homologous sequences from co-circulating CV-A17 and A20 in the 2CATPase region as well as to those from co-circulating CV-A13, A17 and A20 in the 3Dpol region. This study provided the first evidence uncovering CV-A20 strains as major recombination partners of PVs. High quality AFP surveillance, sensitive environmental surveillance and efficient vaccination activities remain essential to ensure timely detection and efficient response to recombinant cVDPVs outbreaks in DR Congo. Such needs are valid for any epidemiological setting where high frequency and genetic diversity of Coxsackieviruses A13, A17 and A20 provide a conducive viral ecosystem for the emergence of virulent recombinant cVDPVs.

Tratto da: www.plos.org
Note sul Copyright: Articles and accompanying materials published by PLOS on the PLOS Sites, unless otherwise indicated, are licensed by the respective authors of such articles for use and distribution by you subject to citation of the original source in accordance with the Creative Commons Attribution (CC BY) license.

The invasive giant African snail <i>Lissachatina fulica</i> as natural intermediate host of <i>Aelurostrongylus abstrusus</i>, <i>Angiostrongylus vasorum</i>, <i>Troglostrongylus brevior</i>, and <i>Crenosoma vulpis</i> in Colombia

by Felipe Penagos-Tabares, Malin K. Lange, Juan Vélez, Jörg Hirzmann, Jesed Gutiérrez-Arboleda, Anja Taubert, Carlos Hermosilla, Jenny J. Chaparro Gutiérrez

Background

Several metastrongyloid lungworms are unreported pathogens in Colombia. Angiostrongylus vasorum and Crenosoma vulpis target the cardiopulmonary system of domestic and wild canids. Aelurostrongylus abstrusus and Troglostrongylus brevior infect felids and considering that six wild felid species exist in Colombia, knowledge of feline lungworm infections is important for their conservation. The zoonotic metastrongyloids Angiostrongylus costaricensis and Angiostrongylus cantonensis can cause severe gastrointestinal and neurological diseases. Angiostrongylus costaricensis has been reported in Colombia, while Ang. cantonensis is present in neighbouring countries. Research on the epidemiology of metastrongyloids in Colombia and South America more broadly requires evaluating the role that gastropods play as intermediate hosts in their life cycles. This study assessed the prevalence of metastrongyloid larvae in populations of the invasive giant African snail, Lissachatina fulica, in Colombia.

Methodology/Principal findings

A total of 609 Lissachantina fulica were collected from 6 Colombian municipalities. The snails were then cryo-euthanized, artificially digested and the sediments examined microscopically for the presence of metastrongyloid larvae. Based on morphological characteristics 53.3% (56/107) of the snails from Puerto Leguízamo (Department of Putumayo) were infected with Ael. abstrusus larvae, 8.4% (9/107) with Ang. vasorum larvae, 6.5% (7/107) with T. brevior larvae and 5.6% (6/107) with C. vulpis larvae, being the region with highest prevalences of the four species. Snails from Andes (Department of Antioquia) and Tulúa (Department of Valle del Cauca) were positive for Ang. vasorum larvae with a prevalence of 4.6 (11/238) and 6.3% (4/64), respectively. Species identifications were confirmed by PCR and sequencing.

Conclusions/Significance

This epidemiological survey reports for first time the presence of Ael. abstrusus, T. brevior, C. vulpis and Ang. vasorum in L. fulica in a number of regions of Colombia.

Tratto da: www.plos.org
Note sul Copyright: Articles and accompanying materials published by PLOS on the PLOS Sites, unless otherwise indicated, are licensed by the respective authors of such articles for use and distribution by you subject to citation of the original source in accordance with the Creative Commons Attribution (CC BY) license.

Inhibition of <i>Tityus serrulatus</i> venom hyaluronidase affects venom biodistribution

by Bárbara Bruna Ribeiro de Oliveira-Mendes, Sued Eustáquio Mendes Miranda, Douglas Ferreira Sales-Medina, Bárbara de Freitas Magalhães, Yan Kalapothakis, Renan Pedra de Souza, Valbert Nascimento Cardoso, André Luís Branco de Barros, Clara Guerra-Duarte, Evanguedes Kalapothakis, Carolina Campolina Rebello Horta

Background

The hyaluronidase enzyme is generally known as a spreading factor in animal venoms. Although its activity has been demonstrated in several organisms, a deeper knowledge about hyaluronidase and the venom spreading process from the bite/sting site until its elimination from the victim’s body is still in need. Herein, we further pursued the goal of demonstrating the effects of inhibition of T. serrulatus venom (TsV) hyaluronidase on venom biodistribution.

Methods and principal findings

We used technetium-99m radiolabeled Tityus serrulatus venom (99mTc-TsV) to evaluate the venom distribution kinetics in mice. To understand the hyaluronidase’s role in the venom’s biodistribution, 99mTc-TsV was immunoneutralized with specific anti-T.serrulatus hyaluronidase serum. Venom biodistribution was monitored by scintigraphic images of treated animals and by measuring radioactivity levels in tissues as heart, liver, lungs, spleen, thyroid, and kidneys. In general, results revealed that hyaluronidase inhibition delays venom components distribution, when compared to the non-neutralized 99mTc-TsV control group. Scintigraphic images showed that the majority of the immunoneutralized venom is retained at the injection site, whereas non-treated venom is quickly biodistributed throughout the animal’s body. At the first 30 min, concentration peaks are observed in the heart, liver, lungs, spleen, and thyroid, which gradually decreases over time. On the other hand, immunoneutralized 99mTc-TsV takes 240 min to reach high concentrations in the organs. A higher concentration of immunoneutralized 99mTc-TsV was observed in the kidneys in comparison with the non-treated venom. Further, in situ neutralization of 99mTc-TsV by anti-T.serrulatus hyaluronidase serum at zero, ten, and 30 min post venom injection showed that late inhibition of hyaluronidase can still affect venom biodistribution. In this assay, immunoneutralized 99mTc-TsV was accumulated in the bloodstream until 120 or 240 min after TsV injection, depending on anti-hyaluronidase administration time. Altogether, our data show that immunoneutralization of hyaluronidase prevents venom spreading from the injection site.

Conclusions

By comparing TsV biodistribution in the absence or presence of anti-hyaluronidase serum, the results obtained in the present work show that hyaluronidase has a key role not only in the venom spreading from the inoculation point to the bloodstream, but also in venom biodistribution from the bloodstream to target organs. Our findings demonstrate that hyaluronidase is indeed an important spreading factor of TsV and its inhibition can be used as a novel first-aid strategy in envenoming.

Tratto da: www.plos.org
Note sul Copyright: Articles and accompanying materials published by PLOS on the PLOS Sites, unless otherwise indicated, are licensed by the respective authors of such articles for use and distribution by you subject to citation of the original source in accordance with the Creative Commons Attribution (CC BY) license.

Niche-specific metabolic adaptation in biotrophic and necrotrophic oomycetes is manifested in differential use of nutrients, variation in gene content, and enzyme evolution

by Audrey M. V. Ah-Fong, Meenakshi S. Kagda, Melania Abrahamian, Howard S. Judelson

The use of host nutrients to support pathogen growth is central to disease. We addressed the relationship between metabolism and trophic behavior by comparing metabolic gene expression during potato tuber colonization by two oomycetes, the hemibiotroph Phytophthora infestans and the necrotroph Pythium ultimum. Genes for several pathways including amino acid, nucleotide, and cofactor biosynthesis were expressed more by Ph. infestans during its biotrophic stage compared to Py. ultimum. In contrast, Py. ultimum had higher expression of genes for metabolizing compounds that are normally sequestered within plant cells but released to the pathogen upon plant cell lysis, such as starch and triacylglycerides. The transcription pattern of metabolic genes in Ph. infestans during late infection became more like that of Py. ultimum, consistent with the former’s transition to necrotrophy. Interspecific variation in metabolic gene content was limited but included the presence of γ-amylase only in Py. ultimum. The pathogens were also found to employ strikingly distinct strategies for using nitrate. Measurements of mRNA, 15N labeling studies, enzyme assays, and immunoblotting indicated that the assimilation pathway in Ph. infestans was nitrate-insensitive but induced during amino acid and ammonium starvation. In contrast, the pathway was nitrate-induced but not amino acid-repressed in Py. ultimum. The lack of amino acid repression in Py. ultimum appears due to the absence of a transcription factor common to fungi and Phytophthora that acts as a nitrogen metabolite repressor. Evidence for functional diversification in nitrate reductase protein was also observed. Its temperature optimum was adapted to each organism’s growth range, and its Km was much lower in Py. ultimum. In summary, we observed divergence in patterns of gene expression, gene content, and enzyme function which contribute to the fitness of each species in its niche.

Tratto da: www.plos.org
Note sul Copyright: Articles and accompanying materials published by PLOS on the PLOS Sites, unless otherwise indicated, are licensed by the respective authors of such articles for use and distribution by you subject to citation of the original source in accordance with the Creative Commons Attribution (CC BY) license.

Structure and mechanism of TagA, a novel membrane-associated glycosyltransferase that produces wall teichoic acids in pathogenic bacteria

by Michele D. Kattke, Jason E. Gosschalk, Orlando E. Martinez, Garima Kumar, Robert T. Gale, Duilio Cascio, Michael R. Sawaya, Martin Philips, Eric D. Brown, Robert T. Clubb

Staphylococcus aureus and other bacterial pathogens affix wall teichoic acids (WTAs) to their surface. These highly abundant anionic glycopolymers have critical functions in bacterial physiology and their susceptibility to β-lactam antibiotics. The membrane-associated TagA glycosyltransferase (GT) catalyzes the first-committed step in WTA biosynthesis and is a founding member of the WecB/TagA/CpsF GT family, more than 6,000 enzymes that synthesize a range of extracellular polysaccharides through a poorly understood mechanism. Crystal structures of TagA from T. italicus in its apo- and UDP-bound states reveal a novel GT fold, and coupled with biochemical and cellular data define the mechanism of catalysis. We propose that enzyme activity is regulated by interactions with the bilayer, which trigger a structural change that facilitates proper active site formation and recognition of the enzyme’s lipid-linked substrate. These findings inform upon the molecular basis of WecB/TagA/CpsF activity and could guide the development of new anti-microbial drugs.

Tratto da: www.plos.org
Note sul Copyright: Articles and accompanying materials published by PLOS on the PLOS Sites, unless otherwise indicated, are licensed by the respective authors of such articles for use and distribution by you subject to citation of the original source in accordance with the Creative Commons Attribution (CC BY) license.

E6 proteins from high-risk HPV, low-risk HPV, and animal papillomaviruses activate the Wnt/β-catenin pathway through E6AP-dependent degradation of NHERF1

by Camille M. Drews, Samuel Case, Scott B. Vande Pol

High-risk human papillomavirus (HPV) E6 proteins associate with the cellular ubiquitin ligase E6-Associated Protein (E6AP), and then recruit both p53 and certain cellular PDZ proteins for ubiquitination and degradation by the proteasome. Low-risk HPV E6 proteins also associate with E6AP, yet fail to recruit p53 or PDZ proteins; their E6AP-dependent targets have so far been uncharacterized. We found a cellular PDZ protein called Na+/H+ Exchanger Regulatory Factor 1 (NHERF1) is targeted for degradation by both high and low-risk HPV E6 proteins as well as E6 proteins from diverse non-primate mammalian species. NHERF1 was degraded by E6 in a manner dependent upon E6AP ubiquitin ligase activity but independent of PDZ interactions. A novel structural domain of E6, independent of the p53 recognition domain, was necessary to associate with and degrade NHERF1, and the NHERF1 EB domain was required for E6-mediated degradation. Degradation of NHERF1 by E6 activated canonical Wnt/β-catenin signaling, a key pathway that regulates cell growth and proliferation. Expression levels of NHERF1 increased with increasing cell confluency. This is the first study in which a cellular protein has been identified that is targeted for degradation by both high and low-risk HPV E6 as well as E6 proteins from diverse animal papillomaviruses. This suggests that NHERF1 plays a role in regulating squamous epithelial growth and further suggests that the interaction of E6 proteins with NHERF1 could be a common therapeutic target for multiple papillomavirus types.

Tratto da: www.plos.org
Note sul Copyright: Articles and accompanying materials published by PLOS on the PLOS Sites, unless otherwise indicated, are licensed by the respective authors of such articles for use and distribution by you subject to citation of the original source in accordance with the Creative Commons Attribution (CC BY) license.

Discovery and characterization of variance QTLs in human induced pluripotent stem cells

by Abhishek K. Sarkar, Po-Yuan Tung, John D. Blischak, Jonathan E. Burnett, Yang I. Li, Matthew Stephens, Yoav Gilad

Quantification of gene expression levels at the single cell level has revealed that gene expression can vary substantially even across a population of homogeneous cells. However, it is currently unclear what genomic features control variation in gene expression levels, and whether common genetic variants may impact gene expression variation. Here, we take a genome-wide approach to identify expression variance quantitative trait loci (vQTLs). To this end, we generated single cell RNA-seq (scRNA-seq) data from induced pluripotent stem cells (iPSCs) derived from 53 Yoruba individuals. We collected data for a median of 95 cells per individual and a total of 5,447 single cells, and identified 235 mean expression QTLs (eQTLs) at 10% FDR, of which 79% replicate in bulk RNA-seq data from the same individuals. We further identified 5 vQTLs at 10% FDR, but demonstrate that these can also be explained as effects on mean expression. Our study suggests that dispersion QTLs (dQTLs) which could alter the variance of expression independently of the mean can have larger fold changes, but explain less phenotypic variance than eQTLs. We estimate 4,015 individuals as a lower bound to achieve 80% power to detect the strongest dQTLs in iPSCs. These results will guide the design of future studies on understanding the genetic control of gene expression variance.

Tratto da: www.plos.org
Note sul Copyright: Articles and accompanying materials published by PLOS on the PLOS Sites, unless otherwise indicated, are licensed by the respective authors of such articles for use and distribution by you subject to citation of the original source in accordance with the Creative Commons Attribution (CC BY) license.

CancerInSilico: An R/Bioconductor package for combining mathematical and statistical modeling to simulate time course bulk and single cell gene expression data in cancer

by Thomas D. Sherman, Luciane T. Kagohara, Raymon Cao, Raymond Cheng, Matthew Satriano, Michael Considine, Gabriel Krigsfeld, Ruchira Ranaweera, Yong Tang, Sandra A. Jablonski, Genevieve Stein-O’Brien, Daria A. Gaykalova, Louis M. Weiner, Christine H. Chung, Elana J. Fertig

Bioinformatics techniques to analyze time course bulk and single cell omics data are advancing. The absence of a known ground truth of the dynamics of molecular changes challenges benchmarking their performance on real data. Realistic simulated time-course datasets are essential to assess the performance of time course bioinformatics algorithms. We develop an R/Bioconductor package, CancerInSilico, to simulate bulk and single cell transcriptional data from a known ground truth obtained from mathematical models of cellular systems. This package contains a general R infrastructure for running cell-based models and simulating gene expression data based on the model states. We show how to use this package to simulate a gene expression data set and consequently benchmark analysis methods on this data set with a known ground truth. The package is freely available via Bioconductor: http://bioconductor.org/packages/CancerInSilico/

Tratto da: www.plos.org
Note sul Copyright: Articles and accompanying materials published by PLOS on the PLOS Sites, unless otherwise indicated, are licensed by the respective authors of such articles for use and distribution by you subject to citation of the original source in accordance with the Creative Commons Attribution (CC BY) license.