Confidence resets reveal hierarchical adaptive learning in humans

by Micha Heilbron, Florent Meyniel

Hierarchical processing is pervasive in the brain, but its computational significance for learning under uncertainty is disputed. On the one hand, hierarchical models provide an optimal framework and are becoming increasingly popular to study cognition. On the other hand, non-hierarchical (flat) models remain influential and can learn efficiently, even in uncertain and changing environments. Here, we show that previously proposed hallmarks of hierarchical learning, which relied on reports of learned quantities or choices in simple experiments, are insufficient to categorically distinguish hierarchical from flat models. Instead, we present a novel test which leverages a more complex task, whose hierarchical structure allows generalization between different statistics tracked in parallel. We use reports of confidence to quantitatively and qualitatively arbitrate between the two accounts of learning. Our results support the hierarchical learning framework, and demonstrate how confidence can be a useful metric in learning theory.

Tratto da: www.plos.org
Note sul Copyright: Articles and accompanying materials published by PLOS on the PLOS Sites, unless otherwise indicated, are licensed by the respective authors of such articles for use and distribution by you subject to citation of the original source in accordance with the Creative Commons Attribution (CC BY) license.