EBNA3C facilitates RASSF1A downregulation through ubiquitin-mediated degradation and promoter hypermethylation to drive B-cell proliferation

by Shengwei Zhang, Yonggang Pei, Fengchao Lang, Kunfeng Sun, Rajnish Kumar Singh, Zachary L. Lamplugh, Abhik Saha, Erle S. Robertson

EBV latent antigen 3C (EBNA3C) is essential for EBV-induced primary B-cell transformation. Infection by EBV induces hypermethylation of a number of tumor suppressor genes, which contributes to the development of human cancers. The Ras association domain family isoform 1A (RASSF1A) is a cellular tumor suppressor, which regulates a broad range of cellular functions, including apoptosis, cell-cycle arrest, mitotic arrest, and migration. However, the expression of RASSF1A is lost in many human cancers by epigenetic silencing. In the present study, we showed that EBNA3C promoted B-cell transformation by specifically suppressing the expression of RASSF1A. EBNA3C directly interacted with RASSF1A and induced RASSF1A degradation via the ubiquitin-proteasome-dependent pathway. SCFSkp2, an E3-ubiquitin ligase, was recruited by EBNA3C to enhance RASSF1A degradation. Moreover, EBNA3C decreased the transcriptional activity of RASSF1A promoter by enhancing its methylation through EBNA3C-mediated modulation of DNMTs expression. EBNA3C also inhibited RASSF1A-mediated cell apoptosis, disrupted RASSF1A-mediated microtubule and chromosomal stability, and promoted cell proliferation by upregulating Cyclin D1 and Cyclin E expression. Our data provides new details, which sheds light on additional mechanisms by which EBNA3C can induce B-cell transformation. This will also facilitate the development of novel therapeutic approaches through targeting of the RASSF1A pathway.

Tratto da: www.plos.org
Note sul Copyright: Articles and accompanying materials published by PLOS on the PLOS Sites, unless otherwise indicated, are licensed by the respective authors of such articles for use and distribution by you subject to citation of the original source in accordance with the Creative Commons Attribution (CC BY) license.