Global analysis of N6-methyladenosine functions and its disease association using deep learning and network-based methods

by Song-yao Zhang, Shao-wu Zhang, Xiao-nan Fan, Jia Meng, Yidong Chen, Shou-Jiang Gao, Yufei Huang

N6-methyladenosine (m6A) is the most abundant methylation, existing in >25% of human mRNAs. Exciting recent discoveries indicate the close involvement of m6A in regulating many different aspects of mRNA metabolism and diseases like cancer. However, our current knowledge about how m6A levels are controlled and whether and how regulation of m6A levels of a specific gene can play a role in cancer and other diseases is mostly elusive. We propose in this paper a computational scheme for predicting m6A-regulated genes and m6A-associated disease, which includes Deep-m6A, the first model for detecting condition-specific m6A sites from MeRIP-Seq data with a single base resolution using deep learning and Hot-m6A, a new network-based pipeline that prioritizes functional significant m6A genes and its associated diseases using the Protein-Protein Interaction (PPI) and gene-disease heterogeneous networks. We applied Deep-m6A and this pipeline to 75 MeRIP-seq human samples, which produced a compact set of 709 functionally significant m6A-regulated genes and nine functionally enriched subnetworks. The functional enrichment analysis of these genes and networks reveal that m6A targets key genes of many critical biological processes including transcription, cell organization and transport, and cell proliferation and cancer-related pathways such as Wnt pathway. The m6A-associated disease analysis prioritized five significantly associated diseases including leukemia and renal cell carcinoma. These results demonstrate the power of our proposed computational scheme and provide new leads for understanding m6A regulatory functions and its roles in diseases.

Tratto da:
Note sul Copyright: Articles and accompanying materials published by PLOS on the PLOS Sites, unless otherwise indicated, are licensed by the respective authors of such articles for use and distribution by you subject to citation of the original source in accordance with the Creative Commons Attribution (CC BY) license.