Web - Amazon

We provide Linux to the World


We support WINRAR [What is this] - [Download .exe file(s) for Windows]

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
SITEMAP
Audiobooks by Valerio Di Stefano: Single Download - Complete Download [TAR] [WIM] [ZIP] [RAR] - Alphabetical Download  [TAR] [WIM] [ZIP] [RAR] - Download Instructions

Make a donation: IBAN: IT36M0708677020000000008016 - BIC/SWIFT:  ICRAITRRU60 - VALERIO DI STEFANO or
Privacy Policy Cookie Policy Terms and Conditions
Malaria - Wikipedia, wolna encyklopedia

Malaria

Z Wikipedii

Malaria, zimnica

(malaria, plasmodiosis)

ICD-10:
B50-B54

B50-B54.0 {{{X.0}}}
B50-B54.1 {{{X.1}}}
B50-B54.2 {{{X.2}}}
B50-B54.3 {{{X.3}}}
B50-B54.4 {{{X.4}}}
B50-B54.5 {{{X.5}}}
B50-B54.6 {{{X.6}}}
B50-B54.7 {{{X.7}}}
B50-B54.8 {{{X.8}}}
B50-B54.9 {{{X.9}}}
Rozmaz krwi człowieka z widocznymi pasożytami Plasmodium w erytrocytach.
Rozmaz krwi człowieka z widocznymi pasożytami Plasmodium w erytrocytach.
Sporozoit przemieszczający się w cytoplazmie nabłonka jelitowego
Sporozoit przemieszczający się w cytoplazmie nabłonka jelitowego

Malaria, zimnica (łac. malaria, plasmodiosis, dawna nazwa febra z łac. febris = gorączka, także paludyzm) – ostra lub przewlekła tropikalna choroba pasożytnicza, której różne postacie wywoływane są przez jeden lub więcej z czterech gatunków jednokomórkowego pierwotniaka z rodzaju Plasmodium:

Inne gatunki z rodzaju Plasmodium zarażają zwierzęta. U człowieka najczęściej dochodzi do zakażeń zarodźcem ruchliwym i sierpowatym, przy czym ten ostatni powoduje najcięższą postać choroby i najczęściej prowadzi do zgonu.

Wektorem malarii przenoszącym ją między osobami chorymi i zdrowymi są samice komarów z rodzaju Anopheles.

Jest to najczęstsza na świecie choroba zakaźna na którą co roku zachorowuje ponad 220 mln osób, a umiera 1-3 mln (są to głównie dzieci poniżej 5 roku życia z Czarnej Afryki)[1]. Zachorowania poza terenami tropikalnymi i subtropikalnymi endemicznego występowania tej choroby spotykane są u osób powracających z tych regionów, a także sporadycznie w pobliżu lotnisk i portów, gdzie zostają zawleczone komary z rodzaju Anopheles.

Spis treści

[edytuj] Epidemiologia

Obszary zagrożenia malarycznego
Obszary zagrożenia malarycznego

Malaria występuje w ponad stu krajach strefy tropikalnej i subtropikalnej; narażonych na zachorowanie jest około 1 miliard ludzi.

Zarodźce wymagają do pełnego cyklu rozwojowego 2 żywicieli: człowieka, który jest żywicielem pośrednim (dochodzi w nim do rozmnażania bezpłciowego pierwotniaka) i komara z rodzaju Anopheles, który jest żywicielem ostatecznym (w nim zachodzi rozmnażanie płciowe). To zakażeni ludzie są rezerwuarem czynnika chorobotwórczego - zarodźca malarycznego. Wektorem malarii jest ok. 80 różnych gatunków komarów z rodzaju Anopheles (m.in. widliszek).

Do zakażenia dochodzi, kiedy żywiące się krwią ludzką zakażone samice komarów z rodzaju Anopheles wraz ze śliną do organizmu człowieka wprowadzają sporozoity zarodźca. Do zakażenia może dochodzić także przez transfuzje krwi, zakażone igły i strzykawki oraz z matki na dziecko przez łożysko. Gametocyty od osoby chorującej na malarię dostają się do organizmu samicy komara, gdzie w ciągu 8–35 dni przechodzą cykl rozwojowy, w przebiegu którego powstają sporozoity. Przy ukąszeniu komara sporozoity dostają się do krwi osoby zdrowej.

Występowanie zimnicy zależy od zasięgu występowania komarów przenoszących pasożyta, od zasięgu występowania Plasmodium, a te zależne są od złożonych czynników środowiskowych, biologicznych i społeczno-politycznych, a także od zapoczątkowanego przez WHO w 1953 roku programu masowego zwalczania malarii.

Ze względu na korzystne dla komarów Anopheles warunki rozwoju do rozprzestrzeniania się malarii dochodzi przede wszystkim w rejonach, gdzie temperatura powietrza wynosi 16-33°C, a średnia wilgotność względna jest powyżej 60%. W temperaturze powietrza poniżej 10°C larwy komarów nie rozwijają się, a przy temperaturach 10-16°C rozwijają się wolniej i wykazują mniejszą żywotność. Ze względu na niższą temperaturę i wilgotność powietrza do zakażeń malarią rzadko dochodzi na wysokościach powyżej 2000-2500 m n.p.m.

Samice komarów pobierają pokarm od zmierzchu do świtu, a miejsca ich rozmnażania znajdują się głównie w rejonach wiejskich. Chociaż w niektórych krajach ryzyko zachorowania w miastach jest praktycznie bardzo małe, to w np. Afryce jest całkiem możliwe.

U dużej części Afrykanów występuje odporność na zakażenia P. vivax, co jest spowodowane tym, że ich erytrocyty nie posiadają grupy krwi Duffy, która jest konieczna do zapoczątkowania ich inwazji przez ten gatunek zarodźca. Rozwój zarodźców w erytrocytach jest także utrudniony u pacjentów z hemoglobiną S, hemoglobiną C, hemoglobiną E, talasemią, niedoborem dehydrogenazy glukozo-6-fosforanowej i niektórymi typami owalocytozy.

Uodpornienie na malarię utrzymuje się po przechorowaniu, ale nie jest ono stałe i może dochodzić do ponownych zakażeń, lecz już nie o ostrym przebiegu. Po opuszczeniu strefy malarycznej odporność na malarię zanika. W rejonach wysokiej zachorowalności infekcje u dzieci są powszechne i powodują wysoką śmiertelność, lecz u osób dorosłych wytwarza się odporność.

[edytuj] Oporność P. falciparum na leki

Poważnym problemem, przy odległej perspektywie uzyskania szczepionki przeciw malarii, jest wystąpienie i rozprzestrzenianie się oporności zarodźców na powszechnie stosowane leki przeciwmalaryczne- szczególnie chlorochinę.

Oporność na chlorochinę stwierdzono po raz pierwszy pod koniec lat 50. XX wieku w Kolumbii i Tajlandii. Następnie oporność stwierdzano także w innych krajach Ameryki Południowej i południowo-wschodniej Azji. Sytuacja stała się jeszcze bardziej poważna po stwierdzeniu występowania oporności także w Afryce (po raz pierwszy w Kenii w 1979 r.). W następnych latach stwierdzono rozprzestrzenianie się oporności najpierw w Afryce wschodniej, potem w całej Afryce subsaharyjskiej.

Ustalono, że oporność P. falciparum na chlorochininę i inne środki przeciwmalaryczne jest wywoływana przez mutację jednego genu (pfcrt).

[edytuj] Etiologia

Cykl życiowy Plasmodium.
Cykl życiowy Plasmodium.

Malaria jest wywoływana przez pierwotniaki z rodzaju Plasmodium . U człowieka są to cztery gatunki: P. falciparum, P. malariae, P. ovale i P. vivax. P. vivax jest najczęstszym czynnikiem etiologicznym malarii w skali światowej, odpowiadając za około 80% zachorowań. Jednak P. falciparum uważany jest za istotniejszy patogen, odpowiedzialny za tylko 15% zachorowań, ale aż 90% zgonów[2]. Pasożytnicze gatunki z rodzaju Plasmodium zarażają też ptaki, gady, małpy i gryzonie[3]. Udokumentowano przypadki zarażeń człowieka gatunkami typowo wywołującymi chorobę u małp, mianowicie P. knowlesi, P. inui, P. cynomolgi[4], P. simiovale, P. brazilianum, P. schwetzi i P. simium; znaczenie epidemiologiczne tych infekcji jest jednak bardzo ograniczone. Ptasia zimnica może być śmiertelna dla kur i indyków, ale nie przyczynia się do ekonomicznych strat u hodujących te ptaki. Jej zawleczenie na Hawaje przyczyniło się jednak do poważnego zagrożenia występującej tam endemicznej awifauny[5].

[edytuj] Cykl rozwojowy zarodźca u człowieka

W cyklu rozwojowym zarodźców występuje 2 żywicieli:

Ogólny schemat cyklu rozwojowego przedstawicieli rodzaju Plasmodium powodujących malarię u człowieka jest identyczny, różnice pomiędzy poszczególnymi gatunkami są niewielkie.

Sporozoity zarodźca dostają się do krwi. Część z nich zostaje zniszczona przez leukocyty, ale wiele z biegiem krwi dostaje się do wątroby. W ciągu ok. 30 minut sporozoity znikają z krwi. W komórkach wątroby (hepatocytach) w ciągu 1-3 tygodni przebiega dalsza faza rozwojowa tzn. pozakrwinkowa faza rozwojowa (schizogonia pozakrwinkowa). Sporozoity zmieniają swój kształt, tworząc formę schizonta. Schizonty dzielą się wielokrotnie, przekształcają się i ostatecznie pękają uwalniając 2-40 tys. merozoitów, które uwalniane są do krwi. Proces ten w zależności od gatunku zarodźca trwa 5-21 dni, lecz w wypadku P. vivax i P. ovale schizogonia pozakrwinkowa może być opóźniona nawet do 1-2 lat - takie "uśpione" formy pierwotniaka nazywane są hypnozoitami. Z tego względu mogą występować późne nawroty malarii. Chociaż zjawisko takie nie występuje w przypadku P. falciparum i P. malariae, to występuje u nich przewlekła faza choroby we krwi, co powoduje nawroty w ciągu kilku lat (P. falciparum) lub nawet kilkanaście (P. malariae).

Merozoity zaczynają atakować czerwone krwinki i w wyniku ich działania dochodzi do rozpadu erytrocytów, co powoduje wystąpienie objawów chorobowych typowych dla malarii. W erytrocytach zachodzi albo proces schizogonii krwinkowej, kiedy powstają w dużej liczbie schizonty lub wytwarzane są stosunkowo nieliczne gametocyty (rozmnażanie płciowe zarodźca), które z pobieraną krwią mogą zarażać samice komara z rodzaju Anopheles. W przewodzie pokarmowym samicy komara tworzą one gamety, a po zapłodnieniu zygotę. Zygota przekształca się w oocystę, w której powstaje do ok. 10000 sporozoitów. Gdy oocysta pęka, sporozoity przemieszczają się do jamy ciała, a stamtąd do gruczołów ślinowych. Proces powstawania zakaźnych dla człowieka, inwazyjnych form trwa 2-3 tygodnie.

Cechami wspólnymi tych pierwotniaków są schizogoniczny podział w hepatocytach (stadia trofozoita i schizonta) oraz w erytrocytach (stadium pierścienia, schizonta, merozoita) oraz podział gamogoniczny (gamety, ookineta) i sporogoniczny (sporocysta, sporozoity) w organizmie komara.

Porównanie przebiegu malarii spowodowanej rożnymi gatunkami zarodźca
Gatunek Okres wylęgania Postać choroby Periodyczność gorączki
P. falciparum 7–30 dni (90%) dłużej (10%)* Malaria tropikalna Brak regularności
P. malariae 16–50 dni Czwartaczka 72 h
P. ovale 12–18 dni, dłużej(10%)* Trzeciaczka 48 h
P. vivax 12–18 dni, dłużej(10%)* Trzeciaczka 48 h

* przy wcześniejszym zastosowaniu chemioprofilaktyki

[edytuj] Objawy kliniczne i przebieg

Uogólnione obrzęki spowodowane zespołem nerczycowym w przebiegu malarii
Uogólnione obrzęki spowodowane zespołem nerczycowym w przebiegu malarii

Objawy choroby występują po okresie wylęgania, który wynosi zwykle: dla zarodźca sierpowatego 7–14 dni, 7–30 dni dla zarodźca pasmowego i 8–14 dni dla zarodźca ruchliwego i owalnego. Pierwsze objawy są niecharakterystyczne - choroba rozpoczyna się dreszczami i wysoką gorączką (nawet ponad 40°C), którym towarzyszą bóle głowy, nudności, wymioty, niekiedy biegunka, w końcowym okresie napadu pojawiają się obfite poty i następuje gwałtowne obniżenie temperatury. Napady gorączki pojawiają się co 72 godziny w przypadku trzeciaczki (wywołanej przez zarodźca ruchliwego) lub co 96 godzin w przypadku czwartaczki, dawniej febra czterodniowa (wywołanej przez zarodźca pasmowego). Jednak nie we wszystkich przypadkach, szczególnie na początku zachorowania, przebieg gorączki ma tak "klasyczny" przebieg.

Objawy spowodowane są niszczeniem przez pierwotniaka erytrocytów i w mniejszym stopniu odczuwalne, uszkadzaniem hepatocytów. Efektem rozpadu erytrocytów jest niedokrwistość hemolityczna, żółtaczka i hemoglobinuria.

Inne objawy to: bóle mięśniowe, bóle kręgosłupa, zaburzenia świadomości, objawy neurologiczne, kaszel i duszność.

Atypowy przebieg i objawy chorobowe mogą występować u osób, które uzyskały częściową odporność lub wcześniej stosowały profilaktykę przeciwmalaryczną.

W przypadku inwazji P. ovale i P. vivax choroba lub jej nawroty mogą wystąpić po miesiącach albo latach (pasożyty wytwarzają specjalne formy - hipnozoity).

Wyniki badań laboratoryjnych

W badaniach laboratoryjnych u pacjentów z objawowa malarią stwierdza się wzrost aktywności aminotransferaz, proteinurię, urobilinogenurię, wzrost aktywności LDH w osoczu, wzrost stężenia sorbitolu i jonów Na+.

[edytuj] Powikłania

Powikłania malarii mogą być wczesne i późne. Do wczesnych należą:

  • ciężka niedokrwistość
  • pęknięcie śledziony
  • malaria mózgowa - objawiająca się zaburzeniami przytomności do śpiączki włącznie, objawami ogniskowymi, drgawkami
  • hipoglikemia
  • skaza krwotoczna
  • niewydolność nerek
  • ostra niewydolność oddechowa (obrzęk płuc albo ARDS)
  • wstrząs.

Późne powikłania:

[edytuj] Patogeneza

W przypadku choroby wywołanej przez zarodźca pasmowatego stwierdzono trzy mechanizmy patogenetyczne:

  • niedotlenienie tkanek
  • aktywacja cytokin: TNF, IL-1, IL-6.
  • sekwestracja krwinek czerwonych.

Niedotlenienie tkanek jest wynikiem rozpadu krwinek czerwonych, spowodowanym zarażeniem pasożyta, w mechanizmach autoimmunologicznych, z powodu hipersplenizmu i masywnej hemolizy. Czynnik martwicy nowotworów powoduje supresję erytropoezy. Sekwestracja płytek polega na zlepianiu się erytrocytów i trombocytów ze sobą oraz przyleganiu ich do śródbłonka. Sekwestracja może prowadzić do zamykania drobnych naczyń, uszkodzenia ich ściany i martwicy; to z kolei prowadzi do zmian narządowych, takich jak rozlane symetryczne zapalenie mózgu, martwica kłębuszków nerkowych, uszkodzenie wątroby.

[edytuj] Rozpoznanie

Podejrzenie zimnicy można powziąć na podstawie objawów chorobowych u osoby mieszkającej lub powracającej z terenów endemicznego jej występowania. Czasem prawidłowe rozpoznanie jest opóźnione ze względu na mylenie objawów zimnicy z innymi chorobami gorączkowymi.

Laboratoryjnym potwierdzeniem rozpoznania są badania rozmazów krwi obwodowej (tzw. grubej kropli) barwionej metodą Giemsy, w których stwierdza się pierwotniaki wewnątrz krwinek czerwonych. Ciężki przebieg malarii stwierdza się w wypadku stwierdzenia zarodźców w ponad 20% krwinek[potrzebne źródło].

Dostępne są też testy bibułowe na obecność antygenów P. falciparum. Alternatywna metodą wykrycia pasożytów jest koncentracja krwinek w rurkach hematokrytowych. Niektóre laboratoria dysponują możliwościami określenia szczepu pasożyta i jego lekooporności metodą PCR.

Porównanie morfologii gatunków zarodźca wywołujących malarię u człowieka (wg CDC[6])
Gatunek Stadia obecne we krwi Wygląd erytrocytu Morfologia pasożyta
Plasmodium falciparum Pierścień Prawidłowy; więcej niż w infekcjach innymi gatunkami krwinek zawiera pasożyta Delikatna cytoplazma; 1-2 małe grudki chromatyny; okazjonalnie postaci appliqué
Trofozoit Prawidłowy; rzadko, szczeliny Maurera* Rzadko obserwowane w krwi obwodowej; zbita cytoplazma; ciemny barwnik
Schizont Prawidłowy; rzadko, szczeliny Maurera* Rzadko obserwowane w krwi obwodowej; dojrzałe = 8-24 małych merozoitów; ciemny barwnik, zgromadzony w jednym miejscu
Gametocyt Zniszczony przez pasożyta Księżycowaty lub kiełbaskowaty kształt; chromatyna zbita w jedną grudkę (makrogametocyt) lub rozproszona (mikrogametocyt); ziarna ciemnego barwnika
Plasmodium vivax Pierścień Prawidłowy-powiększony do 0,25×; okrągły; okazjonalnie plamki Schüffnera; nierzadko masywna infekcja licznych erytrocytów Obfita cytoplazma, niekiedy pseudopodia; duża grudka chromatyny
Trofozoit Powiększony do 0,5-2×, może być uszkodzony; plamki Schüffnera Obfita cytoplazma i ameboidalny wygląd; obfita chromatyna; drobne ziarna żółtawobrązowego barwnika
Schizont Powiększony do 0,5-2×, może być uszkodzony; plamki Schüffnera Duży, może niemal całkiem wypełniać erytrocyt; dojrzałe = 12-24 merozoitów; zółtawobrązowy, zbity pigment
Gametocyt Powiększony 0,5-2×; może być uszkodzony; plamki Schüffnera Okrągły lub owalny; zbity; może całkiem wypełniać wnętrze krwinki czerwonej; chromatyna zbita, rozmieszczona ekscentrycznie (makrogametocyt) lub rozproszona (mikrogametocyt); rozrzucone ziarna brązowego barwnika
Plasmodium ovale Pierścień Normalny lub powiększony do 0,25×; okrągły lub owalny; okazjonalnie plamki Schüffnera; niektóre z postrzępionym brzegiem; nierzadko masywna inwazja erytrocytów Gęsta cytoplazma; obfita chromatyna
Trofozoit Normalny lub powiększony do 0,25×; okrągły lub owalny; niektóre z postrzępionym brzegiem; plamki Schüffnera Zbite, z obfitą chromatyną i ciemnobrązowym barwnikiem
Schizont Normalny lub powiększony do 0,25×; okrągły lub owalny; niektóre z postrzępionym brzegiem; plamki Schüffnera Dojrzałe = 6-14 merozoitów z dużymi jądrami, otoczonych ciemnobrązowym barwnikiem
Gametocyt Normalny lub powiększony do 0,25×; okrągły lub owalny; niektóre z postrzępionym brzegiem; plamki Schüffnera Okrągłe lub owalne; mogą całkiem wypełniać erytrocyt; chromatyna zbita, ekscentrycznie (makrogametocyt) lub bardziej równomiernie rozproszona (mikrogametocyt); rozsiane ziarna brązowego barwnika
Plasmodium malariae Pierścień Normalny lub powiększony do 0,75× Gęsta cytoplazma; obfita chromatyna
Trofozoit Normalny lub powiększony do 0,75×; rzadko, kropkowanie Ziemanna* Zbita cytoplazma; obfita chromatyna; okazjonalnie postaci pasmowate; grubeoziarnisty brązowegy barwnik
Schizont Normalny lub powiększony do 0,75×; rzadko, kropkowanie Ziemanna* Dojrzałe = 6-12 merozoitów z dużymi jądrami, otoczonych ciemnobrązowym gruboziarnistym barwnikiem; niekiedy rozetki
Gametocyt Normalny lub powiększony do 0,75×; rzadko, kropkowanie Ziemanna* Okrągłe lub owalne; mogą całkiem wypełniać erytrocyt; chromatyna zbita, ekscentrycznie (makrogametocyt) lub bardziej równomiernie rozproszona (mikrogametocyt); rozsiane ziarna brązowego barwnika
* widoczne w specjalnym barwieniu

[edytuj] Różnicowanie

Malaria wymaga diagnostyki różnicowej z innymi zakaźnymi chorobami gorączkowymi np.:

a także innymi ciężko przebiegającymi chorobami niezakaźnymi, takimi jak:

[edytuj] Leczenie

Zobacz więcej w osobnym artykule: Leki przeciwmalaryczne.
Porównanie leków przeciwmalarycznych[7]
Lek Koszt ($, 2003) Liczba dawek Czas trwania Zabijane postaci zarodźca Działania niepożądane Przeciwwskazania
Chlorochina 0,11 3 48 h Schizonty Zaburzenia pracy przewodu pokarmowego, świąd, zawroty głowy, śmierć w wyniku przedawkowania Padaczka
Sulfadoksyna+pirymetamina 0,14 1 Pojedyncza dawka Schizonty Zespół Stevensa-Johnsona Ciąża, choroba nerek
Chinina 0,97 21 7 dni Schizonty Tinnitus, zawroty głowy, bóle głowy, gorączka, delirium, nudności Niedobór G6PD, zapalenie nerwu wzrokowego, ciąża, szumy uszne, plamica małopłytkowa
Meflochina 2,55 1 Pojedyncza dawka Schizonty Wymioty, ból głowy, insomnia, koszmary, lęk, psychoza Depresja, schizofrenia, zaburzenia lękowe, psychozy, zaburzenia rytmu serca
Atowakwon+chloroguanid 48 3 48 h Schizonty Dyspepsja, ból głowy, zapalenie żołądka
Artemeter+lumefantryna 9,12 6 48 h Schizonty, gametocyty Zawroty głowy, kołatanie serca
Artesunat+meflochina 5 6 48 h Schizonty, gametocyty Wymioty, utrata łaknienia, biegunki Depresja, schizofrenia, zaburzenia rytmu serca
Artesunat+sulfadoksyna+pirymetamina 2,40 3 48 h Schizonty, gametocyty
Artesunat+amodiachina 2 3 48 h Schizonty, gametocyty
Halofantryna Dyspepsja, wydłużenie QTc Zatrzymanie akcji serca
Prymachina 1,68 7-14 7 dni Schizonty w tkankach, gametocyty Dyspepsja, methemoglobinemia, anemia hemolityczna Ciąża, niedobór G6PD, laktacja

Przyczynowe leczenie zimnicy opiera się o chlorochinę, meflochinę, chininę, niekiedy prymachinę oraz doksycyklinę i leki skojarzone (atowakwon z prokwanilem, pirymetamina z sulfadoksyną) oraz kombinacje leków z artemeterem, halofantryną i lumefantryną.

Meflochina jest najskuteczniejszym lekiem w zapobieganiu chorobie wywoływanej przez Plasmodium falciparum oporne na chlorochinę, jednak wywołuje liczne działania niepożądane. W dużych badaniach badaniach klinicznych małe dawki meflochiny wykazywały działania niepożądane nie częściej niż chlorochina.

Połączenie atowakwonu i prokwanilu pod nazwą handlową Malarone dostępne jest w niektórych krajach europejskich, w tym w Polsce; skuteczność preparatu jest porównywalna z meflochiną, lek ma też mniej działań niepożądanych[8]. W profilaktyce choroby wywoływanej przez zarodźce wrażliwe na chlorochinę nie zaleca się już stosowania chlorochiny z prymachiną z powodu ryzyka wywołania hemolizy u chorych z niedoborem dehydrogenazy glukozo-6-fosforanowej.

W Polsce leczenie zimnicy powinno być prowadzone w referencyjnych klinikach zajmujących się medycyną tropikalną (w Gdańsku, Poznaniu i Warszawie).

Oporność na leki przeciwmalaryczne
Mechanizmy oporności Plasmodium falciparum na leki przeciwmalaryczne[7]
Zmutowany gen Produkt genu Miejsce/typ mutacji Lek
pfcrt Transporter Thr76 Chlorochina
pfmdr1 Transporter Tyr86 Chlorochina
Meflochina
Chinina
Dihydroartemizyna
dhps Syntetaza dihydropteroinianu Gly437, Glu540, Gly581 Sulfadoksyna
dhfr Reduktaza dihydrofolianu Asn108, Arg59, Ile51, Leu164 Pirymetamina
cytb Cytochrom b Ser268 Atowakwon

W Papui Nowej Gwinei, na Wyspach Salomona, w Birmie oraz w części Indonezji i Indii zaobserwowano szczepy P. vivax oporne na chlorochinę. W zarażeniach tymi zarodźcami stosowano z powodzeniem chininę, meflochinę oraz halofantrynę, ale nie dotąd ustalono standardów leczenia[9].

[edytuj] Presja ewolucyjna malarii na ludzki genom

Uważa się, że malaria wywarła największą presję selekcyjną na gatunek ludzki w jego najnowszej historii[potrzebne źródło]. Powodem tego jest wysoki współczynnik zachorowalności i śmiertelności, zwłaszcza w chorobie wywołanej przez P. falciparum. Skutkiem presji jest upowszechnienie naturalnych mechanizmów odporności na chorobę na obszarach zagrożenia malarycznego.

[edytuj] Niedokrwistość sierpowatokrwinkowa

Zasięg występowania niedokrwistości sierpowatokrwinkowej w Afryce.
Zasięg występowania niedokrwistości sierpowatokrwinkowej w Afryce.
Zasięg endemicznej zimnicy w Afryce.
Zasięg endemicznej zimnicy w Afryce.

Najlepiej zbadany wpływ pasożyta na ludzki genom ma genetyczna choroba krwi jaką jest niedokrwistość sierpowatokrwinkowa (anemia sierpowata). Chorobę tą wywołuje mutacja w genie HBB kodującym podjednostkę β hemoglobiny. Prawidłowy allel genu koduje glutaminian w pozycji 6 łańcucha β globiny, podczas gdy w niedokrwistości glutaminian zastąpiony jest przez walinę. Zmienia to charakter łańcucha z hydrofilnego na hydrofobowy i sprawia, że cząsteczki hemoglobiny polimeryzują zniekształcając erytrocyty. Krwinki o nieprawidłowym kształcie są szybko usuwane z krążenia i niszczone, przede wszystkim w śledzionie.

Stub sekcji Ta sekcja jest zalążkiem. Jeśli możesz, rozbuduj ją.

[edytuj] Talasemie

Innym dobrze udokumentowanym przykładem presji selekcyjnej na genom ludzki spowodowanej przez malarię są mutacje wywołujące talasemie. Badania przeprowadzone na Sardynii[10] i Papui Nowej Gwinei wykazały, że częstość mutacji wywołującej β-talasemię zależy od częstości występującej tam endemicznie malarii. Badanie na grupie ponad 500 dzieci w Liberii dowiodło, że dzieci posiadające mutację wywołującą β-talasemię mają o 50% mniejsze ryzyko zachorowania na objawową malarię[11]. Inne prace potwierdziły istnienie zależności między częstością endemicznej malarii a prewalencją postaci α+ oraz α-talasemii na tych obszarach, co pozwala przypuszczać, że na geny warunkujące te postaci hemoglobinopatii również wywierana była w toku ewolucji ludzkiego genomu presja selekcyjna[12].

[edytuj] Antygeny Duffy

Antygeny Duffy podlegają ekspresji w różnych komórkach ludzkiego organizmu, w tym w erytrocytach, i pełnią funkcje receptorów chemokin. Antygeny Duffy kodowane są przez geny Fy (Fya, Fyb, Fyc itd.). Plasmodium vivax potrzebuje antygenów Duffy, by móc wniknąć do erytrocytu. U niektórych ludzi antygeny Duffy nie podlegają ekspresji w tych komórkach (są Fy-/Fy-). Taki fenotyp zapewnia całkowitą oporność na zarażenie P. vivax . Spotykany jest rzadko u Europejczyków, Azjatów i w populacji amerykańskiej, za to jest bardzo rozpowszechniony wśród rdzennej ludności zachodniej i środkowej Afryki. Uważa się, że jest to skutek wysokiego narażenia na infekcję P. vivax w Afryce na przestrzeni ostatnich kilkuset lat[13].

[edytuj] Niedobór dehydrogenazy glukozo-6-fosforanowej

Zobacz więcej w osobnym artykule: Niedobór dehydrogenazy glukozo-6-fosforanowej.

Dehydrogenaza glukozo-6-fosforanowa (G6PD) jest enzymem zapewniającym ochronę erytrocytu przed stresem oksydacyjnym. Niedobór enzymu, określany też jako fawizm (OMIM+305900), jest częstą chorobą genetyczną o dziedziczeniu sprzężonym z chromosomem X. Wykazano, że nosiciele zmutowanego genu G6PD rzadziej zachorowują na ciężką postać zimnicy[14].

[edytuj] HLA i interleukina-4

Obecność antygenu HLA-B53 wiąże się z niskim ryzykiem zachorowania na malarię. Ta cząsteczka MHC klasy I prezentuje antygeny wątrobowych postaci zarodźców i sporozoitów komórkom T. Interleukina 4 produkowana przez aktywowane komórki T pobudza proliferację i różnicowanie komórek B wytwarzających przeciwciała. W badaniach przeprowadzonych na Fulanach zamieszkujących Burkina Faso, u których stwierdza się rzadsze zachorowania na ciężką malarię i wyższe niż w sąsiednich plemionach miana przeciwciał przeciwko antygenom zarodźców, stwierdzono związek allelu IL4-524 T z podwyższonym mianem przeciwciał przeciwko antygenom pasożyta; potwierdza to hipotezę o związku HLA-B53 z wrodzoną odpornością na zachorowania[15].

[edytuj] Profilaktyka

Komar Anopheles albimanus wysysający krew z ręki człowieka. Stanowi on wektor malarii i dlatego redukcja jego populacji jest bardzo efektywną metodą zapobiegania malarii
Komar Anopheles albimanus wysysający krew z ręki człowieka. Stanowi on wektor malarii i dlatego redukcja jego populacji jest bardzo efektywną metodą zapobiegania malarii
Moskitiera
Moskitiera

Ważne jest stosowanie profilaktyki przy podróżach na tereny endemicznego występowania malarii. tj. stosowanie płynów odstraszających komary, spanie pod moskitierami, przyjmowanie profilaktycznie leków antymalarycznych.

Liczne zespoły naukowe pracują nad uzyskaniem skutecznej szczepionki przeciw malarii. Ze względu na pewne cechy cyklu życiowego zarodźca (głównie chodzi o jego wewnątrzkomórkowy rozwój) uzyskanie takiej szczepionki natrafia na różne trudności i nadal nie jest stosowane jako najskuteczniejsza metoda profilaktyczna.

W związku z zsekwencjonowaniem w 2002 roku genomu komara Anopheles gambiae[16] powstały plany stworzenie genetycznie zmodyfikowanego komara opornego na zakażenia przez pierwotniaki.

[edytuj] Malaria w Polsce[17]

Terytorium Polski w przeszłości należało do terenów, na których malaria występowała endemicznie. Pierwsze doniesienia o zachorowaniach na malarię pochodzą z XIX wieku. Ważniejsze epidemie malarii stwierdzono w latach: 1846, 1847, 1854-1856, 1873, 1898, 1920-1923 oraz 1946-1949.

W 1921 roku stwierdzono ponad 52 tysiące zachorowań, a latach 1921-1926 podjęto pierwszą akcję zwalczania malarii w Polsce. Zaowocowało to tym, że w 1938 zarejestrowano już tylko 316 przypadków tej choroby wywołanej głównie przez P. vivax. Poprawę zaobserwowano w latach 50. XX wieku, a uzyskano ją w następstwie prowadzenia od 1945 intensywnej akcji przeciwmalarycznej, prowadzonej przez Naczelny Nadzwyczajny Komisariat do Walki z Epidemiami.

Wyraźny i stały spadek zachorowań na malarię stwierdzano od roku 1950, a od 1956 notowano tylko sporadyczne zachorowania zawleczone z innych krajów.

W roku 1968 Światowa Organizacja Zdrowia uznała Polskę za kraj wolny od zimnicy endemicznej. Aktualnie na terenie Polski choroba nie występuje.

Liczba zgłaszanych zachorowań na malarię w latach 1970-1993 wahała się od kilku do ponad 30 rocznie. Były to głównie zachorowania wywołane przez P. vivax i stwierdzane u osób powracających z zagranicy. Zgony były tylko pojedyncze.

W latach 1994-2000 liczba zgłaszanych zachorowań rocznie wahała się od 18 (1994) do 38 (1998) Czynnikiem etiologicznym w większości był P. falciparum. Stwierdzono 7 zgonów.

Nie jest całkowicie wykluczone lokalne szerzenie się w Polsce malarii zawleczonej z zagranicy, ponieważ w Polsce występują powszechnie komary zdolne do jej roznoszenia[potrzebne źródło].

Zimnica umieszczona jest w urzędowym wykazie chorób zakaźnych i zakażeń podlegających zgłaszaniu do jednostek sanitarno-epidemiologicznych[18].

[edytuj] Rys historyczny

Charles Louis Alphonse Laveran
Charles Louis Alphonse Laveran

W 1880 roku francuski lekarz wojskowy Charles Louis Alphonse Laveran przedstawił hipotezę, że malaria jest wywoływana przez pierwotniaka. Po raz pierwszy stwierdzono, że pierwotniaki mogą powodować chorobę u ludzi.

Za swój wkład w medycynę został w roku 1907 uhonorowany Nagrodę Nobla w dziedzinie medycyny. Rok później kubański lekarz Carlos Finlay lecząc pacjentów chorujących na żółtą febrę po raz pierwszy zasugerował, że komary przenoszą tą chorobę. Brytyjczyk Ronald Ross w roku 1898 wykazał, że niektóre gatunki komarów przenoszą malarię na ptaki i w roku 1902 uzyskał Nagrodę Nobla w dziedzinie medycyny za opisanie cyklu rozwojowego malarycznego pasożyta.

[edytuj] Znane osoby, które cierpiały na malarię

Przypisy

  1. http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=dmssa.chapter.1230
  2. Mendis K, Sina B, Marchesini P, Carter R. The neglected burden of Plasmodium vivax malaria. Am J Trop Med Hyg. 64, 1-2 Suppl, 97-106. 2001. PMID 11425182.
  3. Escalante A, Ayala F. Phylogeny of the malarial genus Plasmodium, derived from rRNA gene sequences. Proc Natl Acad Sci U S A. 91, 24, 11373-11377. 1994. PMID 7972067.
  4. Garnham, PCC. Malaria parasites and other haemosporidia. Blackwell Scientific Publications. 1966.
  5. Atkinson CT, Woods KL, Dusek RJ, Sileo LS, Iko WM. Wildlife disease and conservation in Hawaii: pathogenicity of avian malaria (Plasmodium relictum) in experimentally infected iiwi (Vestiaria coccinea). Parasitology. 111, Suppl, 59-69. 1995. PMID 8632925.
  6. CDC: Comparison of Plasmodium Species Which Cause Human Malaria.
  7. 7,0 7,1 Baird JK. Effectiveness of antimalarial drugs. New England Journal of Medicine. 352, 15, 1565-77. 2005. PMID 15829537.
  8. de Alencar FE, Cerutti C Jr, Durlacher RR, Boulos M, Alves FP, Milhous W, et al. Atovaquone and proguanil for the treatment of malaria in Brazil. J Infect Dis. 175, 1544-1547. 1997.
  9. Whitby M. Drug resistant Plasmodium vivax malaria. J Antimicrob Chemother. 40, 749-752. 1997.
  10. Luzzatto L. Thalassemia and malaria selection. Minerva Med. 72, 10, 603-12. 1981. PMID 7017472.
  11. Willcox M, Bjorkman A, Brohult J, Pehrson PO, Rombo L, Bengtsson E. A case-control study in northern Liberia of Plasmodium falciparum malaria in haemoglobin S and beta-thalassaemia traits. Ann Trop Med Parasitol. 77, 3, 239-46. 1983. PMID 6354114.
  12. Yenchitsomanus PT, Summers KM, Bhatia KK, Cattani J, Board PG. Extremely high frequencies of alpha-globin gene deletion in Madang and on Kar Kar Island, Papua New Guinea. Am J Hum Genet. 37, 4, 778-84. 1985. PMID 9556666.
  13. Carter R, Mendis KN. Evolutionary and historical aspects of the burden of malaria. Clin Microbiol Rev. 15, 4, 564-94. 2002. PMID 12364370.
  14. Allison AC, Clyde DF. Malaria in African children with deficient erythrocyte glucose-6-phosphate dehydrogenase. Br Med J. 1, 5236, 1346-1349. 1961. PMID 13682585.
  15. Verra F, Luoni G, Calissano C, Troye-Blomberg M, Perlmann P, Perlmann H, Arcà B, Sirima B, Konaté A, Coluzzi M, Kwiatkowski D, Modiano D. IL4-589C/T polymorphism and IgE levels in severe malaria. Acta Trop. 90, 2, 205-9. 2004. PMID 15177147.
  16. Science. 2002 Oct 4;298(5591):129-49
  17. http://www.pzh.gov.pl/epimeld/2001/M_01_08A.pdf
  18. Ustawa z dnia 6 września 2001 r. o chorobach zakaźnych i zakażeniach. Dziennik Ustaw. Nr 126, poz. 1384. 2001.
  19. Marcin Dominik Zdort: Pampersi - czas przeszły dokonany, Rzeczpospolita, 14 maja 2002

[edytuj] Bibliografia

[edytuj] Linki zewnętrzne


Our "Network":

Project Gutenberg
https://gutenberg.classicistranieri.com

Encyclopaedia Britannica 1911
https://encyclopaediabritannica.classicistranieri.com

Librivox Audiobooks
https://librivox.classicistranieri.com

Linux Distributions
https://old.classicistranieri.com

Magnatune (MP3 Music)
https://magnatune.classicistranieri.com

Static Wikipedia (June 2008)
https://wikipedia.classicistranieri.com

Static Wikipedia (March 2008)
https://wikipedia2007.classicistranieri.com/mar2008/

Static Wikipedia (2007)
https://wikipedia2007.classicistranieri.com

Static Wikipedia (2006)
https://wikipedia2006.classicistranieri.com

Liber Liber
https://liberliber.classicistranieri.com

ZIM Files for Kiwix
https://zim.classicistranieri.com


Other Websites:

Bach - Goldberg Variations
https://www.goldbergvariations.org

Lazarillo de Tormes
https://www.lazarillodetormes.org

Madame Bovary
https://www.madamebovary.org

Il Fu Mattia Pascal
https://www.mattiapascal.it

The Voice in the Desert
https://www.thevoiceinthedesert.org

Confessione d'un amore fascista
https://www.amorefascista.it

Malinverno
https://www.malinverno.org

Debito formativo
https://www.debitoformativo.it

Adina Spire
https://www.adinaspire.com