Miguel de Cervantes y Saavedra - Don Quijote de la Mancha - Ebook:
HTML+ZIP- TXT - TXT+ZIP

Wikipedia for Schools (ES) - Static Wikipedia (ES) 2006
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
SITEMAP
Make a donation: IBAN: IT36M0708677020000000008016 - BIC/SWIFT:  ICRAITRRU60 - VALERIO DI STEFANO or
Privacy Policy Cookie Policy Terms and Conditions
Ecuaciones de Euler (sólidos) - Wikipedia, la enciclopedia libre

Ecuaciones de Euler (sólidos)

De Wikipedia, la enciclopedia libre

En mecánica, las ecuaciones de Euler describen el movimiento de un sólido rígido en rotación en un sistema de referencia solidario con el sólido. Matemáticamente tienen la forma:

\begin{matrix} I_1\dot{\omega}_{1}+(I_3-I_2)\omega_2\omega_3 &=& M_{1}\\ I_2\dot{\omega}_{2}+(I_1-I_3)\omega_3\omega_1 &=& M_{2}\\ I_3\dot{\omega}_{3}+(I_2-I_1)\omega_1\omega_2 &=& M_{3} \end{matrix}


donde M_{k} \, son las componentes vectoriales del momento o torque total aplicado, I_{k} \, son los momentos principales de inercia y ωk son las componentes del vector velocidad angular \boldsymbol\omega según los ejes principales de inercia.

Tabla de contenidos

[editar] Motivación y derivación

En un sistema de referencia inercial la derivada del momento angular es igual al torque o momento de fuerzas aplicado:

\frac{d\mathbf{L}}{dt} \equiv \frac{d}{dt} \left( \mathbf{I} \cdot \boldsymbol\omega \right) = \mathbf{M}

Donde \mathbf{I} is el tensor de momentos de inercia. Sin embargo, aunque la ecuación anterior es universalmente válida, no resulta útil en la práctica para calcular el movimiento puesto que generalmente, tanto \mathbf{I} como \boldsymbol\omega varían con el tiempo.

Sin embargo, el problema anterior se resuelve si consideramos un sistema de referencia no-inercial solidario con el sólido rígido en rotación, porque respecto a este sistema de referencia el tensor de [momentos de] inercia \mathbf{I} es constante y sólo la velocidad angular \boldsymbol\omega varía con el tiempo. De hecho de todos los posibles sistemas de este tipo tomaremos por simplicidad y conveniencia matemática uno cuyos ejes coincidan con las direcciones principales de inercia (que permiten forman un triedro rectángulo). En estas condiciones el vector momento angular puede escribirse como:

\mathbf{L} \equiv  L_{1}\mathbf{e}_{1} + L_{2}\mathbf{e}_{2} + L_{3}\mathbf{e}_{3} =  I_{1}\omega_{1}\mathbf{e}_{1} + I_{2}\omega_{2}\mathbf{e}_{2} + I_{3}\omega_{3}\mathbf{e}_{3}

Donde Ik son los momentos de inercia principales, \mathbf{e}_{k} son los vectores unitarios en la dirección de los ejes principales de inercia y ωk son las componentes de la velocidad angular expresadas en la base formada por los vectores unitarios anteriores. En un sistema no-inercial giratorio, la derivada temporal debe ser reemplazada por otra expresión que de cuenta también de las fuerzas ficticias asociadas a la no-inercialidad del sistema:

\left(\frac{d\mathbf{L}}{dt}\right)_\mathrm{rot}+ \boldsymbol\omega\times\mathbf{L}=\mathbf{N}

Donde el subíndice rot indica que una magnitud se computa en el sistema no-inercial rotatorio. Substituyendo L_{k} \equiv I_{k}\omega_{k}, tomando el producto vectorial y usando el hecho de que los momentos principales de inercia no varían con el tiempo, llegamos a las ecuanciones de Euler:

\begin{matrix} I_1\dot{\omega}_{1}+(I_3-I_2)\omega_2\omega_3 &=& N_{1}\\ I_2\dot{\omega}_{2}+(I_1-I_3)\omega_3\omega_1 &=& N_{2}\\ I_3\dot{\omega}_{3}+(I_2-I_1)\omega_1\omega_2 &=& N_{3} \end{matrix}

[editar] Rotación libre en el espacio

Cuando el torque es nulo tenemos una solución de movimiento libre. En general puesto que en general la velocidad angular no coincide con ninguno de los ejes principales de inercia lo cual se traduce en un movimiento de precesión carecterizado porque el eje de rotación se mueve alredor de la recta que coincide con la dirección del momento angular y otro de nutación caracterizado porque el eje de rotación oscila variando su ángulo con el la dirección del momento angular.

Se puede ver porqué sucede a partir de la ecuaión de movimiento expresada en un sistema inercial cuando el momento es cero:

\frac{d\mathbf{L}}{dt} \equiv \frac{d}{dt} \left( \mathbf{I}(t) \cdot \boldsymbol\omega (t) \right) = 0

Puesto que para un sólido giratorio \mathbf{I}(t) varía con el tiempo, la única manera de que \mathbf{L} sea constante es que \boldsymbol\omega (t) también varía con el tiempo.


[editar] Véase también


[editar] Referencias

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Sub-domains

CDRoms - Magnatune - Librivox - Liber Liber - Encyclopaedia Britannica - Project Gutenberg - Wikipedia 2008 - Wikipedia 2007 - Wikipedia 2006 -

Other Domains

https://www.classicistranieri.it - https://www.ebooksgratis.com - https://www.gutenbergaustralia.com - https://www.englishwikipedia.com - https://www.wikipediazim.com - https://www.wikisourcezim.com - https://www.projectgutenberg.net - https://www.projectgutenberg.es - https://www.radioascolto.com - https://www.debitoformtivo.it - https://www.wikipediaforschools.org - https://www.projectgutenbergzim.com