Miguel de Cervantes y Saavedra - Don Quijote de la Mancha - Ebook:
HTML+ZIP- TXT - TXT+ZIP

Wikipedia for Schools (ES) - Static Wikipedia (ES) 2006
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
SITEMAP
Make a donation: IBAN: IT36M0708677020000000008016 - BIC/SWIFT:  ICRAITRRU60 - VALERIO DI STEFANO or
Privacy Policy Cookie Policy Terms and Conditions
Ley de Coulomb - Wikipedia, la enciclopedia libre

Ley de Coulomb

De Wikipedia, la enciclopedia libre

Se denomina interacción electrostática a la fuerza de atracción o repulsión que se observa entre objetos con carga eléctrica, debida a la sola existencia de estas cargas, dando origen al campo electrostático. Las características cuantitativas de este fenómeno fueron estudiadas por Coulomb y Cavendish, dando origen a lo que se conoce como Ley de Coulomb.

La ley de Coulomb lleva su nombre en honor a Charles-Augustin de Coulomb, uno de sus descubridores y el primero en publicarlo. No obstante, Henry Cavendish obtuvo la expresión correcta de la ley, con mayor precisión que Coulomb, si bien esto no se supo hasta después de su muerte.

Tabla de contenidos

[editar] Descubrimiento del fenómeno

Coulomb estudió en detalle las fuerzas de interacción entre partículas con carga eléctrica, haciendo referencia a cargas puntuales (aquellas cargas cuya magnitud es muy pequeña respecto a la distancia que los separa).

Balanza de torsión de Coulomb
Aumentar
Balanza de torsión de Coulomb

Este notorio físico francés efectuó mediciones muy cuidadosas de las fuerzas existentes entre cargas puntuales utilizando una balanza de torsión similar a la usada por Cavendish para evaluar la ley de la gravitación universal.

La balanza de torsión consiste en una barra que cuelga de una fibra. Esta fibra es capaz de torcerse, y si la barra gira la fibra tiende a regresarla a su posición original. Si se conoce la fuerza de torsión que la fibra ejerce sobre la barra, se logra un método sensible para medir fuerzas.

En la barra de la balanza, Coulomb, colocó una pequeña esfera cargada y, a continuación, a diferentes distancias, posicionó otra esferita con carga de igual magnitud. Luego midió la fuerza entre ellas observando el ángulo que giraba la barra.

Dichas mediciones permitieron determinar que:

1) La fuerza de interacción entre dos cargas q1 y q2 duplica su magnitud si alguna de las cargas dobla su valor, la triplica si alguna de las cargas aumenta su valor en un factor de tres, y así sucesivamente. Concluyó entonces que el valor de la fuerza era proporcional al producto de las cargas:

F \,\! \propto \,\! q_1 \,\!     y     F \,\! \propto \,\! q_2\,\!

en consecuencia:

F \,\! \propto \,\! q_1 q_2\,\!

2) Si la distancia entre las cargas es r, al duplicarla, la fuerza de interacción disminuye en un factor de 4; al triplicarla, disminuye en un factor de 9 y al cuadriplicar r, la fuerza entre cargas disminuye en un factor de 16. En consecuencia, la fuerza de interacción entre dos cargas puntuales, es inversamente proporcional al cuadrado de la distancia:

F \,\! \propto \,\! 1\over r^2

Variación de la Fuerza de Coulomb en función de la distancia
Aumentar
Variación de la Fuerza de Coulomb en función de la distancia

Asociando las relaciones obtenidas en 1) y 2):

F \,\! \propto \,\! q_1q_2\over r^2

Finalmente, se introduce una constante de proporcionalidad para transformar la relación anterior en una igualdad:

F = \kappa \frac{q_1 q_2}{r^2}

La creencia en la ley de Coulomb, no descansa cuantitativamente en los experimentos del mismo[cita requerida]. Las medidas con la balanza de torsión son difíciles de hacer con una precisión de más de unos cuantos centésimos. Esas medidas no son lo suficientemente precisas como para determinar que el exponente de la ecuación de Coulomb es 2 y no fuera, por ejemplo, 2,01. El hecho es que la ley de Coulomb puede deducirse mediante experimentos indirectos que ponen de manifiesto que el exponente en cuestión debe estar comprendido entre 2,000000002 y 1,999999998[cita requerida]. No es raro, entonces, que se considere que el exponente sea exactamente 2.

[editar] Enunciado de la ley

El enunciado que describe la ley de Coulomb es el siguiente:

"La magnitud de cada una de las fuerzas eléctricas con que interactúan dos cargas puntuales es directamente proporcional al producto de las cargas e inversamente proporcional al cuadrado de la distancia que las separa."

Esta ley es válida sólo en condiciones estacionarias, es decir, cuando no hay movimiento de las cargas o, como aproximación, el movimiento se realiza a velocidades bajas y trayectorias rectilíneas uniformes. Se le llama a esta fuerza Fuerza Electrostática. La parte Electro proviene de que se trata de fuerzas eléctricas y estática debido a la ausencia de movimiento de las cargas.

En términos matemáticos, la magnitud F de la fuerza que cada una de las dos cargas puntuales q1 y q2 ejerce sobre la otra separadas por una distancia r se expresa como:

F = \kappa \frac{\left|q_1\right| \left|q_2\right|}{r^2}

Dadas dos cargas puntuales q1 y q2 separadas una distancia r en el vacío, se atraen o repelen entre sí con una fuerza cuya magnitud esta dada por:

F = \kappa \frac{q_1 q_2}{r^2}

f=k q1 q2/r2 La Ley de Coulomb se expresa mejor con magnitudes vectoriales:

\vec F = \frac{1}{4 \pi \varepsilon}\frac{q_1 q_2}{r^2} \vec{u}_r = \frac{1}{4 \pi \epsilon}\frac{q_1 q_2}{|\vec{r}_2-\vec{r}_1|^3}(\vec{r}_2 -\vec{r_1} )

donde \vec{u}_r es un vector unitario que va en la dirección de la recta que une las cargas, siendo su sentido desde la carga que produce la fuerza hacia la carga que la experimenta. El exponente (de la distancia: r) de la Ley de Coulomb es, hasta donde se sabe hoy en día, exactamente 2. Experimentalmente se sabe que, si el exponente fuera de la forma (2+ \delta)\,\!, entonces \left | \delta \right |< 10^{-16}\,\!.

Representación gráfica de la Ley de Coulomb para dos cargas del mismo signo.
Representación gráfica de la Ley de Coulomb para dos cargas del mismo signo.

Obsérvese que esto satisface la tercera de la ley de Newton debido a que implica que fuerzas de igual magnitud actúan sobre q_1\,\! y q_2\,\!. La ley de Coulomb es una ecuación vectorial e incluye el hecho de que la fuerza actúa a lo largo de la línea de unión entre las cargas.

[editar] Constante de Coulomb

La constante \kappa\,\! es la Constante de Coulomb y su valor para unidades SI es \frac{1}{4 \pi \varepsilon} N/.

A su vez la constante \varepsilon = \varepsilon_r \varepsilon_0 donde \varepsilon_r es la permitividad relativa, \varepsilon_r > 1, y \varepsilon_0=8,85 \times 10^{-12} F/m es la permitividad del medio en el vacío.

Cuando el medio que rodea a las cargas no es el vacío hay que tener en cuenta la constante dieléctrica y la permitividad del material.

Algunos valores son:

Material \varepsilon_r \varepsilon (F/m) \kappa\,\! (N/)
Vacío 1 8,85·10-12 8,99·109
Parafina 2,1-2,2 1,90·10-11 4,16·109
Mica 6-7 5,76·10-11 1,38·109
Papel parafinado 2,2 1,95·10-11 4,09·109
Poliestireno 1,05 9,30·10-12 8,56·109
Baquelita 3,8-5 3,90·10-11 2,04·109
C-irbolito 3-5 3,54·10-11 2,25·109
Vidrio orgánico 3,2-3,6 3,01·10-11 2,64·109
Vidrio 5,5-10 6,86·10-11 1,16·109
Aire 1,0006 8,86·10-12 8,98·109
Mármol 7,5-10 7,75·10-11 1,03·109
Ebonita 2,5-3 2,43·10-11 3,27·109
Porcelana 5,5-6,5 5,31·10-11 1,50·109
Micalex 7-9 7,08·10-11 1,12·109
Micarta A y B 7-8 6,64·10-11 1,20·109
Batista barnizada 3,5-5 3,76·10-11 2,11·109
Goma en hojas 2,6-3,5 2,70·10-11 2,95·109
Poliestireno 2,7 2,39·10-11 3,33·109

La ecuación de la ley de Coulomb queda finalmente expresada de la siguiente manera:

F = \kappa\frac{q_1 q_2}{r^2}

[editar] Principio de superposición y la Ley de Coulomb

Como ley básica adicional, no deducible de la ley de Coulomb, se encuentra el Principio de Superposición:

"La fuerza total ejercida sobre una carga eléctrica q por un conjunto de cargas q_1, q_2, q_3,..., q_N \,\! será igual a la suma vectorial de cada una de las fuerzas ejercidas por cada carga q_i\,\! sobre la carga q\,\!."

\vec F=\sum_i^N \vec F_i=\sum_i^N \kappa \frac{q_i q}{r_i^2} \vec{u_r}_i

Representación gráfica del principio de superposición
Representación gráfica del principio de superposición

Conjuntamente, la Ley de Coulomb y el Principio de Superposición constituyen los pilares de la electrostática.

[editar] Verificación experimental de la Ley de Coulomb

Es posible verificar la ley de Coulomb mediante un experimento sencillo.

Considérense dos pequeñas esferas de masa m cargadas con cargas iguales q del mismo signo que cuelgan de dos hilos de longitud l, tal como se indica en la figura.

Sobre cada esfera actúan tres fuerzas: el peso mg, la tensión de la cuerda T y la fuerza de repulsión eléctrica entre las bolitas F1.

En el equilibrio: T \ \sin \theta_1 =F_1 \,\! (1) y T \ \cos \theta_1 =mg \,\! (2).

Dividiendo (1) entre (2) miembro a miembro, se obtiene: \frac {\sin \theta_1}{\cos \theta_1 }= \frac {F_1}{mg}\Rightarrow F_1= mg. \tan \theta_1\,\!

Siendo L1 la separación de equilibrio entre las esferas cargadas, la fuerza F1 de repulsión entre ellas, vale, de acuerdo con la ley de Coulomb: F_1 = \frac{q^2}{4 \pi \epsilon_0 L_1^2} y, por lo tanto, se cumple la siguiente igualdad: \frac{q^2}{4 \pi \epsilon_0 L_1^2}=mg. \tan \theta_1\,\! (3)

Al descargar una de las esferas y ponerla, a continuación, en contacto con la esfera cargada , cada una de ellas adquiere una carga q/2, en el equilibrio su separación será L2 < L1 y la fuerza de repulsíón entre las mismas estará dada por: F_2 = \frac{{\left (\frac{q}{2}\right )}^2}{4 \pi \epsilon_0 L_2^2}=\frac{\frac{q^2}{4}}{4 \pi \epsilon_0 L_2^2}

Por estar en equilibrio, tal como se dedujo más arriba: F_2= mg. \tan \theta_2\,\!.

Y de modo similar se obtiene: \frac{\frac{q^2}{4}}{4 \pi \epsilon_0 L_2^2}=mg. \tan \theta_2\,\! (4)

Dividiendo (3) entre (4), miembro a miembro, se llega a la siguiente igualdad:

\frac{\frac{q^2}{4 \pi \epsilon_0 L_1^2}}{\frac{\frac{q^2}{4}}{4 \pi \epsilon_0 L_2^2}}=\frac{mg. \tan \theta_1}{mg. \tan \theta_2} \Longrightarrow 4 {\left ( \frac {L_2}{L_1} \right ) }^2= \frac{ \tan \theta_1}{ \tan \theta_2} (5)

Midiendo los ángulos θ1 y θ2 y las separaciones entre las cargas L1 y L2 es posible verificar que la igualdad se cumple dentro del error experimental.

En la práctica, los ángulos pueden resultar difíciles de medir, así que si la longitud de los hilos que sostienen las esferas son lo suficientemente largos, los ángulos resultarán lo bastante pequeños como para hacer la siguiente aproximación:

\tan \theta  \approx \sin \theta= \frac{\frac{L}{2}}{l}=\frac{L}{2l}\Longrightarrow\frac{ \tan \theta_1}{ \tan \theta_2}\approx \frac{\frac{L_1}{2l}}{\frac{L_2}{2l}}

Con esta aproximación, la relación (5) se transforma en otra mucho más simple:

\frac{\frac{L_1}{2l}}{\frac{L_2}{2l}}\approx 4 {\left ( \frac {L_2}{L_1} \right ) }^2 \Longrightarrow \frac{L_1}{L_2}\approx 4 {\left ( \frac {L_2}{L_1} \right ) }^2\Longrightarrow \frac{L_1}{L_2}\approx\sqrt[3]{4}

De esta forma, la verificación se reduce a medir la separación entre cargas y comprobar que su cociente se aproxima al valor indicado.

[editar] Comparación entre la Ley de Coulomb y la Ley de la Gravitación Universal

Esta comparación es relevante ya que ambas leyes dictan el comportamiento de dos de las fuerzas fundamentales de la naturaleza mediante expresiones matemáticas cuya similitud es notoria.

La ley de la gravitación universal establece que la fuerza de atracción entre dos masas es directamente proporcional al producto de las mismas e inversamente proporcional al cuadrado de la distancia que las separa.

Expresándolo matemáticamente: F = G\frac{m_1 m_2}{r^2} siendo G la constante de gravitación universal, m1 y m2 las masas de los cuerpos en cuestión y r la la distancia entre los centros de las masas. G vale 6,67·10-11 Nm2/kg2.

A pesar del chocante parecido en las expresiones de ambas leyes se encuentran dos diferencias insoslayables.

La primera es que en el caso de la gravedad no se han podido observar masas de diferente signo como sucede en el caso de las cargas eléctricas, y por tanto, la fuerza entre masas siempre es atractiva.

La segunda tiene que ver con los órdenes de magnitud de la fuerza de gravedad y de la fuerza eléctrica. Para aclararlo analizaremos como actúan ambas entre un protón y un electrón en el núcleo de hidrógeno.fuck

La separación promedio entre el electrón y el protón es de 5,3·10-11 m.

La carga del electrón y la del protón valen e^-=-1,6 \times 10^{-19}C y p^+=1,6 \times 10^{-19}C respectivamente y sus masas son m_{e^-}=9,11 \times 10^{-31}kg y m_{p^+}=-1,67 \times 10^{-27}kg.

Sustituyendo los datos:

F_E =\kappa \frac{q_1 q_2}{r^2}= 8,99 \times 10^{9}\frac{Nm^2}{C^2}\frac{-1,6 \times 10^{-19}C \times 1,6 \times 10^{-19}C}{5,3 \times 10^{-11}m^2}=8,2 \times 10^{-8}N

F_G = G\frac{m_1 m_2}{r^2}= 6,67 \times 10^{-11}\frac{Nm^2}{kg^2} \frac{9,11 \times 10^{-31}kg \times 1,67 \times 10^{-27}kg}{5,3 \times 10^{-11}m^2}=3,6 \times 10^{-47}N.

Al comparar resultados se observa que la fuerza eléctrica es de unos 39 órdenes de magnitud superior a la fuerza gravitacional.

Lo que esto representa puede ser ilustrado mediante un ejemplo muy llamativo.

1 C equivale a la carga que pasa en 1 s por cualquier punto de un conductor por el que circula una corriente de intensidad 1 A constante. En viviendas con tensiones de 220 Vrms, esto equivale a un segundo de una bombilla de 220 W (120 W para las instalaciones domésticas de 120 Vrms).

Si fuera posible concentrar la mencionada carga en dos puntos con una separación de 1 metro, la fuerza de interacción sería:

F_E =\kappa \frac{q_1 q_2}{r^2}= 8,99 \times 10^{9}\frac{Nm^2}{C^2} \frac {1C \times 1C}{{1m}^2}=9 \times 10^9N, o sea, ¡916 millones de kilopondios, o el peso de una masa de casi un millón de toneladas (un teragramo)!

Si tales cargas se pudieran concentrar de la forma indicada más arriba, se alejarían bajo la influencia de esta enorme fuerza, ¡aunque tuvieran que arrancarse del acero sólido para hacerlo!

Si de esta hipotética disposición de cargas resultan fuerzas tan enormes, ¿por qué no se observan despliegues dramáticos debidos a las fuerzas eléctricas? La respuesta general es que en un punto dado de cualquier conductor nunca hay demasiado alejamiento de la neutralidad eléctrica. La naturaleza nunca acumula un Coulomb de carga en un punto.

[editar] Limitaciones de la Ley de Coulomb

-La expresión matemática solo es aplicable a cargas puntuales.

-La fuerza no está definida para r = 0.

[editar] Véase también


Electromagnetismo
Electricidad · Magnetismo

Electrostática : Campo eléctrico · Carga eléctrica · Ley de Gauss · Ley de Coulomb · Potencial eléctrico

Magnetostática : Amperio · Campo magnético · Corriente eléctrica · Momento magnético

Electrodinámica : Campo electromagnético · Corriente de desplazamiento · Ecuaciones de Maxwell · Fuerza electromotriz · Fuerza de Lorentz · Inducción magnética · Ley de Lenz · Radiación electromagnética

Circuito eléctrico : Condensador · Electrónica · Generador eléctrico · Guía de onda · Impedancia · Inductancia · Resistencia eléctrica

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Sub-domains

CDRoms - Magnatune - Librivox - Liber Liber - Encyclopaedia Britannica - Project Gutenberg - Wikipedia 2008 - Wikipedia 2007 - Wikipedia 2006 -

Other Domains

https://www.classicistranieri.it - https://www.ebooksgratis.com - https://www.gutenbergaustralia.com - https://www.englishwikipedia.com - https://www.wikipediazim.com - https://www.wikisourcezim.com - https://www.projectgutenberg.net - https://www.projectgutenberg.es - https://www.radioascolto.com - https://www.debitoformtivo.it - https://www.wikipediaforschools.org - https://www.projectgutenbergzim.com