Miguel de Cervantes y Saavedra - Don Quijote de la Mancha - Ebook:
HTML+ZIP- TXT - TXT+ZIP

Wikipedia for Schools (ES) - Static Wikipedia (ES) 2006
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
SITEMAP
Make a donation: IBAN: IT36M0708677020000000008016 - BIC/SWIFT:  ICRAITRRU60 - VALERIO DI STEFANO or
Privacy Policy Cookie Policy Terms and Conditions
Rayos gamma - Wikipedia, la enciclopedia libre

Rayos gamma

De Wikipedia, la enciclopedia libre

Engranajes

Uno o más wikipedistas están trabajando actualmente en extender este artículo.

Es posible que, a causa de ello, haya lagunas de contenido o deficiencias de formato. Por favor, antes de realizar correcciones mayores o reescrituras, contacta con ellos en su página de usuario o la página de discusión del artículo para poder coordinar la redacción.

La radiación gamma (γ) es un tipo de radiación electromagnética producida generalmente por elementos radiactivos, procesos subatómicos como la aniquilación de un par positrón-electrón. Este tipo de radiación tan energética también es producida en fenómenos astrofísicos de gran violencia.

Debido a las altas energías que poseen, los rayos gamma constituyen un tipo de radiación ionizante capaz de penetrar en la materia más profundamente que la radiación alfa o beta. Dada su alta energía pueden causar grave daño al núcleo de las células, por lo que son usados para esterilizar equipos médicos y alimentos.

La energía de este tipo de radiación se mide en megaelectronvoltios (MeV). Un Mev corresponde a fotones gamma de longitudes de onda inferiores a 10 - 11 m o frecuencias superiores a 1019 Hz.

Los rayos gamma se producen en la desexcitación de un nucleón de un nivel excitado a otro de menor energía y en la desintegración de isótopos radiactivos. Los rayos gamma se diferencian de los rayos X en su origen, debido a que estos últimos se producen a nivel extranuclear, por fenómenos de frenamiento electrónico. Generalmente asociada con la energía nuclear y los reactores nucleares, la radiactividad se encuentra en nuestro entorno natural, desde los rayos cósmicos, que nos bombardean desde el sol y las galaxias de fuera de nuestro sistema solar, hasta algunos isótopos radiactivos que forman parte de nuestro entorno natural.

Los rayos gamma producidos en el espacio no llegan a la superficie de la Tierra, pues son absorbidos en la alta atmósfera. Para observar el universo en estas frecuencias, es necesario utilizar globos de gran altitud u observatorios espaciales. En ambos casos se utiliza el efecto Compton para detectar los rayos gamma. Estos rayos gamma se producen en fenómenos astrofísicos de alta energía como explosiones de supernovas o núcleos de galaxias activas. En astrofísica se denominan GRB (Gamma Ray Bursts) a fuentes de rayos gamma que duran unos segundos o unas pocas horas siendo sucedidos por un brillo decreciente de la fuente en rayos X durante algunos días. Ocurren en posiciones aleatorias del cielo y su origen permanece todavía bajo discusión científica. En todo caso parecen constituir los fenómenos más energéticos del Universo.

Tabla de contenidos

[editar] Protección

Para protegerse de los rayos gamma se requiere gran cantidad de masa. Los materiales de alto número atómico y alta densidad protegen mejor contra los rayos gamma. A mayor energía de los mismos la anchura de la protección puede ser menor. Los materiales para protegerse de los rayos gamma son caracterizados con la anchura necesaria para reducir la intensidad de los rayos gamma a la mitad (half value layer o HVL). Por ejemplo, los rayos gamma que requieren 1 cm (0.4 pulgadas) de plomo para reducir su intensidad en un 50% también verán reducida su intensidad a la mitad por 6 cm (2½ pulgadas) de hormigón o 9 cm (3½ pulgadas) de tierra compacta.

[editar] Interacción con la materia

El coeficiente de absorción total de rayos gamma del aluminio (número atómico 13) según distintas energías de rayos gamma y las contribuciones de los tres efectos. En la mayoría de la región de energía mostrada, el efecto Compton domina.
Aumentar
El coeficiente de absorción total de rayos gamma del aluminio (número atómico 13) según distintas energías de rayos gamma y las contribuciones de los tres efectos. En la mayoría de la región de energía mostrada, el efecto Compton domina.
El coeficiente de absorción total de rayos gamma del plomo (número atómico 82) según distintas energías de rayos gamma y las contribuciones de los tres efectos. Aquí, el efecto fotoeléctrico domina en energía bajas. A partir de 5 MeV, la creación de pares empieza a dominar.
Aumentar
El coeficiente de absorción total de rayos gamma del plomo (número atómico 82) según distintas energías de rayos gamma y las contribuciones de los tres efectos. Aquí, el efecto fotoeléctrico domina en energía bajas. A partir de 5 MeV, la creación de pares empieza a dominar.

Cuando un rayo gamma pasa a través de la materia, la probabilidad de absorción en una capa fina es proporcional a la delgadez de dicha capa, lo que lleva a un decrecimiento exponencial de la intensidad.

I(d) = I_0 \cdot e ^{(-\mu d)}

Aquí, μ = n×σ es el coeficiente de absorción, medido en cm–1, n el número de átomos por cm3 en el material, σ el espectro de absorción en cm2 y d la delgadez del material en cm.

Pasando a través de la materia, la radiación gamma principalmente ioniza de tres formas: el efecto fotoeléctrico, el efecto Compton y la creación de pares.


  • Efecto Fotoeléctico: Describe cuando un fotón gamma interactúa con un electrón atómico y le transfiere su energía, expulsando a dicho electrón del átomo. La energía cinética del fotoelectrón resultante es igual a la energía del fotón gamma incidente menos la energía de enlace del electrón. El efecto fotoeléctrico es el mecanismo de transferencia de energía dominante para rayos x y fotones de rayos gamma con energías por debajo de 50 keV (miles de electronvóltios), pero es menos importante a energías más elevadas.
  • Efecto Compton: Se refiere a la interacción donde un fotón gamma incidente hace perder suficiente energía a un electrón atómico como para provocar su expulsión. Con la energía restante del fotón original se emite un nuevo fotón gamma de baja energía con una dirección de emisión diferente a la del fotón gamma incidente. La probabilidad del Efecto Compton decrece según la energía del fotón se incrementa. El Efecto Compton se considera que es el principal mecanismo de absorción de rayos gamma en el rango de energía intermedio entre 100 keV a 10 MeV (Megaelectronvoltio), un rango de energía que incluye la mayor parte de la radiación gamma presente en una explosión nuclear. El efecto Compton es relativamente independiente de número atómico del material absorbente.
  • Creación de pares: Debido a la interacción de la fuerza de Coulomb, en la vecindad del núcleo, la energía del fotón incidente se convierte espontáneamente en la masa de un par electrón-positrón. Un positrón es la antipartícula equivalente a un electrón; tiene la misma masa de un electrón, pero tiene una carga positiva de igual fuerza que la carga negativa de un electrón. La energía excedente del equivalente a la masa en reposo de las dos partículas (1,02 MeV) aparece como energía cinética del par y del núcleo. El positrón tiene una vida muy corta (sobre 10–8 segundos). Al final de su periodo, se combina con un electrón libre. Toda la masa de estas dos partículas se convierte entonces en dos fotones gamma de 0,51 MeV de energía cada uno.

Los electrones secundarios (o positrones) producidos en cualquier de estos tres procesos, frecuentemente tienen energía suficiente para producir muchas ionizaciones hasta el final del proceso.

La absorción exponencial descrita arriba se mantiene, estrictamente hablando, solo para un rayo estrecho de rayos gamma. Si un rayo más ancho de rayos gamma pasa a través de un fino bloque de hormigón, la dispersión en los lados reduce la absorción.

A menudo, los rayos gamma se presentan entre otras formas de radiación, como la alfa o la beta. Cuando un núcleo emite una partícula α o β, a veces el Producto de desintegración queda excitado pudiendo saltar a un nivel de energía inferior emitiendo un rayo gamma, de igual manera que un electrón atómico puede saltar a un nivel de energía inferior emitiendo luz visible o radiación ultravioleta.

Esquema de Descomposición de 60Co
Aumentar
Esquema de Descomposición de 60Co

Las posibles formas de radiación electromagnética son los rayos gamma, los rayos X, la luz visible y los rayos UV. La única diferencia entre ellos es la frecuencia y por lo tanto, la energía de los fotones, siendo los rayos gamma los más energéticos. A continuación se muestra un ejemplo de producción de rayos gamma.

Primero 60Co se descompone en 60Ni excitado:

{}^{60}\hbox{Co}\;\to\;^{60}\hbox{Ni*}\;+\;e^-\;+\;\overline{\nu}_e.

Entonces el 60Ni cae a su estado fundamental emitiendo dos rayos gamma seguidos uno del otro.

{}^{60}\hbox{Ni*}\;\to\;^{60}\hbox{Ni}\;+\;\gamma.

Los rayos gamma son de 1,17 MeV y 1,33 MeV respectivamente.

Otro ejemplo es la descomposición alfa de 241Am para producir 237Np. Esta descomposición alfa esta acompañada por una emisión gamma. Es algunos casos, esta emisión gamma es bastante simple (por ejemplo, 60Co/60Ni), mientras que en otros casos como con (241Am/237Np y 192Ir/192Pt), la emisión gamma es compleja, revelando que una serie de distintos niveles de energía nuclear pueden existir. El hecho de que un el espectro alfa puede tener una serie de diferentes picos con diferentes energías, refuerza la idea de que muchos niveles de energía nuclear son posibles.

Debido a que una descomposición beta esta acompañada de la emisión de un neutrino que a su vez, resta energía, el espectro beta no posee líneas definidas, sino que es un pico ancho. Por lo tanto, de una única descomposición beta no es posible determinar los diferentes niveles energéticos encontrados en el núcleo.

En óptica espectrópica, es bien conocido que una entidad que emite luz, también puede absorber luz de la misma longitud de onda (energía del fotón). Por ejemplo, un llama de sodio puede emitir luz amarilla y además, puede absorber luz amarilla de una lámpara de vapor de sodio. En el caso de los rayos gamma, se puede observar en la espectroscopia Mössbauer, donde se puede obtener una corrección para la energía perdida por el retroceso del núcleo y las condiciones exactas para la absorción de los rayos gamma a través de la resonancia.

Esto es similar a efecto Frank Condon visto en óptica espectroscópica.



[editar] Referencias

http://www.eluniversal.com.mx/graficos/animados/videos/videoya.html

[editar] Véase también

[editar] Enlaces externos

Wiktionary
El Wikcionario tiene una entrada sobre rayos gamma
Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Sub-domains

CDRoms - Magnatune - Librivox - Liber Liber - Encyclopaedia Britannica - Project Gutenberg - Wikipedia 2008 - Wikipedia 2007 - Wikipedia 2006 -

Other Domains

https://www.classicistranieri.it - https://www.ebooksgratis.com - https://www.gutenbergaustralia.com - https://www.englishwikipedia.com - https://www.wikipediazim.com - https://www.wikisourcezim.com - https://www.projectgutenberg.net - https://www.projectgutenberg.es - https://www.radioascolto.com - https://www.debitoformtivo.it - https://www.wikipediaforschools.org - https://www.projectgutenbergzim.com