Miguel de Cervantes y Saavedra - Don Quijote de la Mancha - Ebook:
HTML+ZIP- TXT - TXT+ZIP

Wikipedia for Schools (ES) - Static Wikipedia (ES) 2006
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
SITEMAP
Make a donation: IBAN: IT36M0708677020000000008016 - BIC/SWIFT:  ICRAITRRU60 - VALERIO DI STEFANO or
Privacy Policy Cookie Policy Terms and Conditions
Tensor de curvatura - Wikipedia, la enciclopedia libre

Tensor de curvatura

De Wikipedia, la enciclopedia libre

En geometría diferencial, tensor de curvatura es una de las nociones métricas más importantes. Un tensor de curvatura es una generalización de la Curvatura de Gauss a dimensiones más altas (dos ejemplos de esto son el tensor de Riemann que se desarrolla en este artículo y el tensor de Ricci).

La geometría infinitesimal de las variedades de Riemann con dimensión ≥ 3 es demasiado complicada como para describirla totalmente por un número en un punto dado (tal como sucede cuando la dimensión es menor o igual que 2). Así en 2 dimensiones la curvatura puede representarse por un número escalar [o tensor de orden cero], en 3 dimensiones la curvatura puede representarse por un tensor de segundo (como por ejemplo el tensor de Ricci). Sin embargo para dimensiones totalmente generales se necesita al menos un tensor de cuarto orden (como el tensor de Riemann). Fue Riemann quien introdujo una manera de describir completamente la curvatura en cualquier número de dimensiones pediante un "pequeño monstruo" de tensor, llamado tensor de Riemann.

Lo qué sigue es una descripción de éste último tensor. Se asume que el lector está familiarizado con la curvatura de Gauss. Otros artículos como "conexión de Cartan" y "derivada covariante" contienen dos maneras distintas de introducir y de calcular el tensor de curvatura).


Tabla de contenidos

[editar] El "triángulo de oro" de la geometría de Riemann

Las tres nociones básicas, llamadas "triángulo de oro" de la geometría de Riemann son:

El transporte paralelo es una noción equivalente a especificar una derivada covariante - o una conexión. A su vez una conexión determina el tensor de curvatura de Riemann. Más concretamente el tensor de curvatura viene dado en términos de una conexión (diferenciación covariante) por la fórmula siguiente:

R(u,v)w=\nabla_u\nabla_v w - \nabla_v \nabla_u w -\nabla_{[u,v]} w

El tensor de la curvatura, por otra parte, vía holonomía, determina transporte paralelo, aunque solamente hasta un gauge.


[editar] Varias formas del tensor de curvatura en una variedad de Riemann

Hay varias maneras equivalentes de pensar en el tensor de curvatura en el caso de una variedad de Riemann. Quizás la manera más fácil de entenderlo es como transformación lineal R de 2-formas. Para explicar esto, considere la curvatura seccional, es decir la curvatura de una superficie geodésica de dos dimensiones que pasa a través de un punto - una sección, que es la imagen de un plano tangente bajo la función exponencial. El correspondiente plano tangente se puede representar por 2-formas. El tensor de curvatura da información equivalente a especificar todas las curvaturas seccionales. La norma cuadrada de una 2-forma por la curvatura seccional correspondiente de hecho da una nueva forma cuadrática en un espacio de 2-formas, y es dada exactamente por el operador lineal simétrico R. es decir (R(s), s) = k(s)(s, s).

El operador R puede ser entendido de otra manera. Cada 2-forma se puede representar por un lazo rectangular pequeño (de muchas maneras, pero de la forma correspondiente es lo qué importa aquí). Entonces el transporte paralelo alrededor de este lazo da lugar a una transformación del espacio tangente. Ésta es una transformación infinitesimal del espacio tangente, que se puede representar por un elemento del álgebra de Lie correspondiente al grupo de Lie de todas las transformaciones lineales del espacio tangente. Pero esta álgebra de Lie es nuevamente un álgebra de 2-formas, y R(s) es precisamente este generador.

El álgebra de Lie de todas las transformaciones del lazo es el álgebra de Lie de la holonomía correspondiente a la curvatura.

Otra manera de representar la curvatura es como un tensor (1,3)-valente. En geometría de Riemann, la valencia de este tensor se puede alterar, y hay otras representaciones equivalentes de la curvatura. En el formalismo de Cartan, la curvatura se da como matriz Ω de 2-formas.

[editar] Expresión en coordenadas locales

En un sistema de coordenadas asociada a una carta local xμ las componentes del tensor de curvatura de Riemann vienen dadas por:

{R^\rho}_{\sigma\mu\nu} = dx^\rho(R(\partial_{\mu},\partial_{\nu})\partial_{\sigma})

Donde \partial_{\mu} = \partial/\partial x^{\mu} son los campos vectoriales asociados a cada una de las coordenadas. La expresión anterior puede reescribirse a base de productos y derivadas de los símbolos de Christoffel de la siguiente manera:

{R^\rho}_{\sigma\mu\nu} = \partial_\mu\Gamma^\rho_{\nu\sigma}     - \partial_\nu\Gamma^\rho_{\mu\sigma}     + \Gamma^\rho_{\mu\lambda}\Gamma^\lambda_{\nu\sigma}     - \Gamma^\rho_{\nu\lambda}\Gamma^\lambda_{\mu\sigma}



[editar] Descomposición del tensor de curvatura

[editar] Curvaturas escalar y de Ricci

En dos dimensiones, el tensor de curvatura está determinado por la curvatura escalar - que es la traza completa tensorial de la curvatura. En tres dimensiones, el tensor de curvatura está especificado por la curvatura de Ricci - que es una traza parcial tensorial de la curvatura. Esto tiene que ver con el hecho de que el espacio de 2-formas es tridimensional: la misma razón por la que podemos definir el producto vectorial para 3 dimensiones (el producto vectorial es precisamente el producto cuña de dos 1-formas compuesto con la estrella de Hodge, si representamos vectores con su 1-formas correspondientes).

En más dimensiones, el tensor pleno de curvatura contiene más información que la curvatura de Ricci. Eso significa que, para un número de dimensiones n < 4, el tensor de curvatura queda completamente especificado si se conoce el tensor de Ricci, no ocurriendo así para n > 3. Eso tiene una importante consecuencia en la Teoría general de la relatividad puesto que el espacio-tiempo de n = 4 dimensiones, pero en donde las ecuaciones del campo gravitatorio sólo determinan el tensor de Ricci. Por tanto, las ecuaciones de Einstein para el campo gravitatorio no determinan completamente el tensor de curvatura total: La parte de la curvatura no especificada por las ecuaciones de Einstein, coincide precisamente con el tensor de Weyl que se definie a continuación.

[editar] La curvatura de Weyl

Para dimensión n>3, el tensor de curvatura se puede descomponer en la parte que depende de la curvatura de Ricci, y el tensor de Weyl. Si R es el tensor (0, 4)-valente de curvatura de Riemann, entonces

R=s/2n(n-1) g\circ g + (Ric-sg/n) \circ g/(n-2) +W

donde Ric es la versión (0, 2)-valente de la curvatura de Ricci, s es la curvatura escalar y g es el tensor métrico (0, 2)-valente y

h\circ k(v_1,v_2,v_3,v_4) =h(v_1,v_3)k(v_2,v_4)+h(v_2,v_4)k(v_1,v_3)-h(v_1,v_4)k(v_2,v_3)-h(v_2,v_3)k(v_1,v_4)

es el llamado producto de Kulkarni-Nomizu de los dos (0, 2)-tensores.

Las componentes del tensor de Weyl pueden ser calculadas explícitamente a partir del tensor de curvatura de Riemann, el tensor de curvatrua de Ricci y la curvatura escalar:

C_{abcd}=R_{abcd}-\frac{2}{n-2}(g_{a[c}R_{d]b}-g_{b[c}R_{d]a})+\frac{2}{(n-1)(n-2)}s~g_{a[c}g_{d]b}

donde Rabcd son las componentes del tensor de Riemann, Rab son las componentes del tensor de Ricci, s \, es la curvatura escalar de Ricci y [] se refiere a la parte antisimétrica de un tensor.

Si g'=fg para una cierta función escalar - el cambio conforme de la métrica - entonces W'=fW. Para curvatura constante, el tensor de Weyl es cero. Por otra parte, W=0 si y solamente si la métrica es conforme a la métrica euclidiana estándar (igual a fg, donde g es la métrica estándar en un cierto marco coordinado y f es una cierta función escalar). La curvatura es constante si y solamente si W=0 y Ric=s/n

Portal Contenidos relacionados con Matemática
Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Sub-domains

CDRoms - Magnatune - Librivox - Liber Liber - Encyclopaedia Britannica - Project Gutenberg - Wikipedia 2008 - Wikipedia 2007 - Wikipedia 2006 -

Other Domains

https://www.classicistranieri.it - https://www.ebooksgratis.com - https://www.gutenbergaustralia.com - https://www.englishwikipedia.com - https://www.wikipediazim.com - https://www.wikisourcezim.com - https://www.projectgutenberg.net - https://www.projectgutenberg.es - https://www.radioascolto.com - https://www.debitoformtivo.it - https://www.wikipediaforschools.org - https://www.projectgutenbergzim.com