Miguel de Cervantes y Saavedra - Don Quijote de la Mancha - Ebook:
HTML+ZIP- TXT - TXT+ZIP

Wikipedia for Schools (ES) - Static Wikipedia (ES) 2006
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
SITEMAP
Make a donation: IBAN: IT36M0708677020000000008016 - BIC/SWIFT:  ICRAITRRU60 - VALERIO DI STEFANO or
Privacy Policy Cookie Policy Terms and Conditions
Traza parcial - Wikipedia, la enciclopedia libre

Traza parcial

De Wikipedia, la enciclopedia libre

En el álgebra lineal y el análisis funcional, la traza parcial es una generalización de la traza. Mientras que la traza es una función a valores escalares sobre operadores, la traza parcial es una función operador-valorada. La traza parcial tiene usos en la interpretación de estados relativos (Many-worlds) de la mecánica cuántica.

Tabla de contenidos

[editar] Los detalles

Supóngase V, W son espacios vectoriales sobre un cuerpo finito-dimensionales de dimensiones m, n respectivamente. La traza parcial TrV es una función

\operatorname{L}(V \otimes W) \ni T \mapsto \operatorname{Tr}_V(T) \in \operatorname{L}(V)

Se define como sigue: sea

e_1, \ldots, e_m

y

f_1, \ldots, f_n

bases para V y W respectivamente; entonces T tiene una representación matricial

\{a_{k \ell, i j}\}  \quad 1 \leq k, i \leq m, 1 \leq \ell,j \leq n

relativo a la base

e_k \otimes f_\ell

de

V \otimes W.

Ahora para los índices k, i en el rango 1,...,m, considérese la suma:

b_{k, i} = \sum_{j=1}^n a_{k j, i j}.

esto da una matriz bk, i. El operador lineal asociado en V es independiente de la elección de bases y es por definición la traza parcial.

Por ejemplo,

\operatorname{Tr}_V(R \otimes S) = R \, \operatorname{Tr}(S) \quad \forall R \in \operatorname{L}(V) \quad \forall S \in \operatorname{L}(W)

el operador de traza parcial puede ser caracterizado invariantemente como sigue: Es el único operador lineal

\operatorname{Tr}_V: V \otimes W \rightarrow V

tal que

\operatorname{Tr}_V (1_{V \otimes W}) = \dim W \ 1_{V}
\operatorname{Tr}_V (T (1_V \otimes S)) = \operatorname{Tr}_V ((1_V \otimes S) T) \quad \forall S \in \operatorname{L}(W) \quad \forall T \in \operatorname{L}(V \otimes W)


[editar] Traza parcial para los operadores en los espacios de Hilbert

La traza parcial se generaliza a los operadores en los espacios de Hilbert infinito dimensionales. Supóngase V, W son espacios de Hilbert, y sea

\{f_i\}_{i \in I}

una base ortonormal para W. Hay un isomorfismo isométrico

\bigoplus_{\ell \in I} (V \otimes \mathbb{C}   f_\ell) \rightarrow V \otimes W

Bajo esta descomposición, cualquier operador T \in \operatorname{L}(V \otimes W) se puede mirar como matriz infinita de operadores en V


\begin{bmatrix} T_{11} & T_{12} & \ldots & T_{1 j} & \ldots \\                         T_{21} & T_{22} & \ldots & T_{2 j} & \ldots \\                          \vdots & \vdots & & \vdots \\                         T_{k1}& T_{k2} & \ldots & T_{k j} & \ldots \\                         \vdots  & \vdots & & \vdots  \end{bmatrix}

primero supóngase que T es un operador no negativo. En este caso, todas las entradas diagonales de la matriz antedicha son operadores no negativos en V. Si la suma

\sum_{\ell} T_{\ell \ell}

converge en la topología fuerte de operadores de L(V), es independiente de la base elegida de W. La traza parcial TrV(T) se define como este operador. La traza parcial de un operador autoadjunto está definida ssi las trazas parciales de las partes positiva y negativa están definidas.

[editar] Computando la traza parcial

Supóngase que W tiene una base ortonormal, que denotamos por la notación vectorial de ket como \{| \ell \rangle\}_\ell. Entonces

\operatorname{Tr}_V\left(\sum_{k,\ell} T_{k \ell} \, \otimes \, | k \rangle \langle \ell |\right) = \sum_j T_{j j}

[editar] Traza parcial e integración invariante

En el caso de los espacios de Hilbert finito dimensionales, hay una manera útil de ver la traza parcial que implica la integración con respecto a una medida de Haar convenientemente normalizada μ sobre el grupo unitario U(W) de W. Convenientemente normalizada significa que μ se toma como una medida con masa total igual a la dim(W).

Teorema. Supóngase V, W son espacios de Hilbert finito dimensionales. Entonces

\int_{\operatorname{U}(W)} (1_V \otimes U^*) T (1_V \otimes U) \ d \mu(U)

conmuta con todos los operadores de la forma 1_V \otimes S y por tanto es unívocamente de la forma R \otimes 1_W. El operador R es la traza parcial de T.

Otros idiomas
Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Sub-domains

CDRoms - Magnatune - Librivox - Liber Liber - Encyclopaedia Britannica - Project Gutenberg - Wikipedia 2008 - Wikipedia 2007 - Wikipedia 2006 -

Other Domains

https://www.classicistranieri.it - https://www.ebooksgratis.com - https://www.gutenbergaustralia.com - https://www.englishwikipedia.com - https://www.wikipediazim.com - https://www.wikisourcezim.com - https://www.projectgutenberg.net - https://www.projectgutenberg.es - https://www.radioascolto.com - https://www.debitoformtivo.it - https://www.wikipediaforschools.org - https://www.projectgutenbergzim.com