Miguel de Cervantes y Saavedra - Don Quijote de la Mancha - Ebook:
HTML+ZIP- TXT - TXT+ZIP

Wikipedia for Schools (ES) - Static Wikipedia (ES) 2006
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
SITEMAP
Make a donation: IBAN: IT36M0708677020000000008016 - BIC/SWIFT:  ICRAITRRU60 - VALERIO DI STEFANO or
Privacy Policy Cookie Policy Terms and Conditions
Circuito integrado - Wikipedia, la enciclopedia libre

Circuito integrado

De Wikipedia, la enciclopedia libre

Detalle de un circuito integrado construido para procesamiento fotográfico.
Aumentar
Detalle de un circuito integrado construido para procesamiento fotográfico.

Un circuito integrado (CI) es una pastilla o chip muy delgado en el que se encuentran miles o millones de dispositivos electrónicos interconectados, principalmente diodos y transistores, y también componentes pasivos como resistencia o capacitores. Su área puede ser de un cm2 o incluso inferior. Algunos de los circuitos integrados más avanzados son los microprocesadores que controlan múltiples artefactos: desde computadoras hasta electrodomésticos, pasando por los teléfonos móviles. Otra familia importante de circuitos integrados la constituyen las memorias digitales.

El transistor actúa como un switch. Este puede encenderse electrónicamente o apagarse, o también puede amplificar corriente. Es utilizado por ejemplo en computadoras para almacenar la información o en el amplificadores de un estéreo para hacer la señal del sonido más fuerte.

Las resistencias limitan el flujo de electricidad y nos dan la posibilidad de controlar la cantidad de corriente que es permitida para fluir, las resistencias son utilizadas, entre otras cosas, para controlar el volumen en una televisión o en una radio.

Los capacitores almacenan electricidad y la liberan en un rápido impulso, como en las cámaras fotográficas con una pequeña batería se puede provocar un fuerte flash para iluminar toda la habitación por un instante.

Los diodos detienen la electricidad bajo alguna condición, y le permiten el paso tan solo cuando esta condición cambia. Esto es utilizado por ejemplo, en las foto celdas donde un haz de luz se corta y activa el diodo para detener el flujo a través de él.

Estos componentes son como los bloques para armar en un circuito integrado, dependiendo de cómo son colocados los componentes se puede obtener desde una simple alarma hasta un complejo microprocesador de una computadora.

El primer CI fue desarrollado en 1958 por el ingeniero Jack Kilby justo meses después de haber sido contratado por la firma Texas Instruments. Se trataba de un dispositivo de germanio que integraba seis transistores en una misma base semiconductora para formar un oscilador de rotación de fase.
En el año 2000 Kilby fue galardonado con el Premio Nobel de Física por la contribución de su invento al desarrollo de la tecnología de la información.

Atendiendo al nivel de integración - número de componentes - los circuitos integrados se clasifican en:

  • SSI (Small Scale Integration) pequeño nivel: inferior a 12
  • MSI (Medium Scale Integration) medio: 12 a 99
  • LSI (Large Scale Integration) grande : 100 a 9999
  • VLSI (Very Large Scale Integration) muy grande : 10 000 a 99 999
  • ULSI (Ultra Large Scale Integration) ultra grande : igual o superior a 100 000

En cuanto a las funciones integradas, los circuitos se clasifican en dos grandes grupos:

Pueden constar desde simples transistores encapsulados juntos, sin unión entre ellos, hasta dispositivos completos como amplificadores, osciladores o incluso receptores de radio completos.
Pueden ser desde básicas puertas lógicas (Y, O, NO) hasta los más complicados microprocesadores.

Éstos son diseñados y fabricados para cumplir una función específica dentro de un sistema. En general, la fabricación de los CI es compleja ya que tienen una alta integración de componentes en un espacio muy reducido de forma que llegan a ser microscópicos. Sin embargo, permiten grandes simplificaciones con respecto los antiguos circuitos, además de un montaje más rápido.

Tabla de contenidos

[editar] Introducción

La historia de los circuitos integrados podría explicar un poco por que nuestro mundo esta lleno de circuitos integrados, podemos encontrar muchos de ellos en computadoras. Por ejemplo, la mayoría de las personas ha escuchado probablemente de los microprocesadores. El microprocesador es un circuito integrado que procesa toda la información en la computadora, este mantiene un registro de las teclas que se han presionadas y de si el mouse ha sido movido, cuenta los números y corre los programas, juegos y el sistema operativo. Los circuitos integrados también pueden ser encontrados en todos los aparatos electrónicos modernos como lo son los automóvil, televisores, reproductores de cd’s, reproductores de MP3, teléfonos celulares, etc. Los circuitos integrados fueron posibles gracias a descubrimientos experimentales que demostraron que los semiconductores pueden realizar las funciones de los tubos de vacío. La integración de grandes cantidades de diminutos transistores en pequeños chips fue un enorme avance sobre la ensamblaje manual de los tubos de vacío (válvulas) y circuitos utilizando componentes discretos. La capacidad de producción masiva de circuitos integrados, confiabilidad y facilidad de agregarles complejidad, impuso la estandarización de los CIs en lugar de diseños utilizando transistores que pronto dejaron obsoletas a las válvulas o tubos de vacío. Existen dos ventajas principales de los CIs sobre los circuitos convencionales: coste y rendimiento. El bajo coste es debido a que los chips, con todos sus componentes, son impresos como una sola pieza por fotolitografía y no construidos por transistores de a uno por vez.



[editar] €dMaxD

[editar] Avances en los circuitos integrados

Los avances que hicieron posible el circuito integrado han sido, fundamentalmente, los desarrollos en la fabricación de dispositivos semiconductores a mediados del siglo XX y los descubrimientos experimentales que mostraron que estos dispositivos podían reemplazar las funciones de las válvulas o tubos de vacío, los que se volvieron rápidamente obsoletos al no poder competir con el tamaño pequeño, el consumo de energía moderado, los tiempos de conmutación mínimos, la confiabilidad, la capacidad de producción en masa y la versatilidad de los circuitos integrados.

Entre los circuitos integrados más avanzados se encuentran los microprocesadores, que controlan todo desde computadoras hasta teléfonos celulares y hornos de microondas. Los chips de memorias digitales son otra familia de circuitos integrados que son de importancia crucial para la moderna sociedad de la información. Mientras que el costo de diseñar y desarrollar un circuito integrado complejo es bastante alto, cuando se reparte entre millones de unidades de producción el costo individual de los CIs por lo general se reduce al mínimo. La eficiencia de los CIs es alta debido a que el pequeño tamaño de los chips permite cortas conexiones que posibilitan la utilización de lógica de bajo consumo (como es el caso de CMOS) en altas velocidades de conmutación.

Con el transcurso de los años, los CIs están constantemente migrando a tamaños más pequeños con mejores características, permitiendo que mayor cantidad de circuitos sean empaquetados en cada chip (véase la ley de Moore). Al mismo tiempo que el tamaño se comprime, prácticamente todo se mejora (el costo y el consumo de energía disminuyen y la velocidad aumenta). Aunque estas ganancias son aparentemente para el usuario final, existe una feroz competencia entre los fabricantes para utilizar geometrías cada vez más delgadas. Este proceso, y el esperado proceso en los próximos años, está muy bien descrito por la International Technology Roadmap for Semiconductors, o ITRS.

[editar] Popularidad de los CIs

Solo ha trascurrido medio siglo después de que se inició su desarrollo y los circuitos integrados se han vuelto omnipresentes. Computadoras, teléfonos móviles y otras aplicaciones digitales son ahora partes inextricables de las sociedades modernas. La informática, las comunicaciones, la manufactura y los sistemas de transporte, incluyendo Internet, todos dependen de las existencia de los circuitos integrados. De hecho, muchos estudiosos piensan que la revolución digital causada por los circuitos integrados es uno de los sucesos más significativos de la historia de la humanidad.

[editar] Tipos

Existen tres tipos de circuitos integrados:

  • Circuitos monolíticos: Están fabricados en un solo monocristal, habitualmente de silicio, pero también existen en germanio, arseniuro de galio, silicio-germanio, etc.
  • Circuitos híbridos de capa fina: Son muy similares a los circuitos monoliticos, pero, además, contienen componentes difíciles de fabricar con tecnología monolítica. Muchos conversores A/D y conversores D/A se fabricaron en tecnología híbrida hasta que progresos en la tecnología permitieron fabricar resistencias precisas.
  • Circuitos híbridos de capa gruesa: Se apartan bastante de los circuitos monolíticos. De hecho suelen contener circuitos monolíticos sin cápsula (dices), transistores, diodos, etc, sobre un sustrato dieléctrico, interconectados con pistas conductoras. Las resistencias se depositan por serigrafía y se ajustan haciéndoles cortes con láser. Todo ello se encapsula, tanto en cápsulas plásticas como metálicas, dependiendo de la disipación de potencia que necesiten. En muchos casos, la cápsula no está "moldeada", sino que simplemente consiste en una resina epoxi que protege el circuito. En el mercado se encuentran circuitos híbridos para módulos de RF, fuentes de alimentación, circuitos de encendido para automóvil, etc.

[editar] Limitaciones de los circuitos integrados

Existen ciertos límites físicos y económicos al desarrollo de los circuitos integrados. Básicamente, son barreras que se van alejando al mejorar la tecnología, pero no desaparcen. Las principales son:

[editar] Disipación de potencia-Evacuación del calor

Los circuitos eléctricos disipan potencia. Cuando el número de componentes integrados en un volumen dado crece, las exigencias en cuanto a disipación de esta potencia, también crecen, calentando el sustrato y degradando el comportamiento del dispositivo. Además, en muchos casos es un comportamiento regenerativo, de modo que cuanto mayor sea la temperatura, más calor producen, fenómeno que se suele llamar "embalamiento térmico" y, que si no se evita, llega a destruir el dispositivo. Los amplificadores de audio y los reguladores de tensión son proclives a este fenómeno, por lo que suelen incorporar "protecciones térmicas".

Los circuitos de potencia, evidentemente, son los que más energía deben disipar. Para ello su cápsula contiene partes metálicas, en contacto con la parte inferior del chip, que sirven de conducto térmico para transferir el calor del chip al disipador o al ambiente. La reducción de resistividad térmica de este conducto, así como de las nuevas cápsulas de compuestos de silicona, permiten mayores disipaciones con cápsulas más pequeñas.

Los circuitos digitales resuelven el problema reduciendo la tensión de alimentación y utilizando tecnologías de bajo consumo, como cmos. Aún así en los circuitos con más densidad de integración y elevadas velocidades, la disipación es uno de los mayores problemas, llegándose a utilizar experimentalmente ciertos tipos de criostatos. Precisamente la alta resistividad térmica del arseniuro de galio es su talón de Aquiles para realizar circuitos digitales con él.

[editar] Capacidades e autoinducciones parásitas

Este efecto se refiere principalmente a las conexiones eléctricas entre el chip, la cápsula y el circuito donde va montada, limitando su frecuencia de funcionamiento. Con patillas más pequeñas se reduce la capacidad y la autoinducción de ellas. En los circuitos digitales excitadores de buses, generadores de reloj, etc, es importante mantener la impedancia de las líneas y, todavía más, en los circuitos de radio y de microondas.

[editar] Límites en los componentes

Los componentes disponibles para integrar tienen ciertas limitaciones, que difieren de las de sus contrapartidas discretas.

  • Resistencias. Son indeseables por necesitar una gran cantidad de superficie. Por ello sólo se usan valores reducidos y, en tecnologías mos, se eliminan casi totalmente.
  • Condensadores. Sólo son posibles valores muy reducidos y a costa de mucha superficie. Como ejemplo, en el amplificador operacional uA741, el condensador de estabilización viene a ocupar un cuarto del chip.
  • Bobinas. Sólo se usan en circuitos de radiofrecuencia, siendo híbridos muchas veces. En general no se integran.

[editar] Densidad de integración

Durante el proceso de fabricación de los circuitos integrados se van acumulando los defectos, de modo que cierto número de componentes del circuito final no funcionan correctamente. Cuando el chip integra un número mayor de componentes, estos componentes defectuosos disminuyen la proporción de chips funcionales. Es por ello que en circuitos de memorias, por ejemplo, donde existen millones de transistores, se fabrican más de los necesarios, de manera que se puede variar la interconexión final para obtener la organización especificada.

[editar] Véase también

[editar] Enlaces externos

Commons

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Sub-domains

CDRoms - Magnatune - Librivox - Liber Liber - Encyclopaedia Britannica - Project Gutenberg - Wikipedia 2008 - Wikipedia 2007 - Wikipedia 2006 -

Other Domains

https://www.classicistranieri.it - https://www.ebooksgratis.com - https://www.gutenbergaustralia.com - https://www.englishwikipedia.com - https://www.wikipediazim.com - https://www.wikisourcezim.com - https://www.projectgutenberg.net - https://www.projectgutenberg.es - https://www.radioascolto.com - https://www.debitoformtivo.it - https://www.wikipediaforschools.org - https://www.projectgutenbergzim.com