Miguel de Cervantes y Saavedra - Don Quijote de la Mancha - Ebook:
HTML+ZIP- TXT - TXT+ZIP

Wikipedia for Schools (ES) - Static Wikipedia (ES) 2006
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
SITEMAP
Make a donation: IBAN: IT36M0708677020000000008016 - BIC/SWIFT:  ICRAITRRU60 - VALERIO DI STEFANO or
Privacy Policy Cookie Policy Terms and Conditions
Resistencia de materiales - Wikipedia, la enciclopedia libre

Resistencia de materiales

De Wikipedia, la enciclopedia libre

Engranajes

Uno o más wikipedistas están trabajando actualmente en extender este artículo.

Es posible que, a causa de ello, haya lagunas de contenido o deficiencias de formato. Por favor, antes de realizar correcciones mayores o reescrituras, contacta con ellos en su página de usuario o la página de discusión del artículo para poder coordinar la redacción.

La resistencia de materiales clásica es una disciplina de la ingeniería mecánica y la ingeniería estructural que estudia los sólidos deformables mediante modelos simplificados. La resistencia de un elemento se define como su capacidad para resistir esfuerzos y fuerzas aplicadas sin romperse, adquirir deformaciones permanentes o deteriorarse de algún modo.

Un modelo de resistencia de materiales establece una relación entre las fuerza aplicadas, también llamadas cargas o acciones, y los esfuerzos y desplazamientos inducidos por ellas. Típicamente las simplificaciones geométricas y las restricciones impuestas sobre el modo de aplicación de las cargas hacen que el campo de deformaciones y tensiones sencillo de calcular.

Para el diseño mecánico de elementos con geometrías complicadas la resistencia de materiales suele ser insuficiente y es necesario usar técnicas basadas en la teoría de la elasticidad o la mecánica de sólidos deformables más generales. Esos problemas planteados en términos de tensiones y deformaciones pueden entonces ser resueltos de forma muy aproximada con métodos numéricos como el análisis por elementos finitos.


Tabla de contenidos

[editar] Enfoque de la resistencia de materiales

La teoría de sólidos deformables requiere generalmente trabajar campos de tensiones y deformaciones, estos son campos tensoriales que satisfacen complicadas ecuaciones diferenciales. Para ciertas geometría aproximadamente unidimensionales (vigas, pilares, celosías, arcos, etc.) o bidimensionales (placas y láminas, membranas, etc.) el estudio puede simplificarse y emplear esfuerzos internos en lugar de tensiones. A su vez las deformaciones están determinadas por la hipótesis cinemática explicita los desplazamientos de la geometría simplificada. El esquema teórico de un análisis de resistencia de materiales comprende:

  • Hipótesis cinemática establece como serán las deformaciones o el campo de desplazamientos para un determinado tipo de elementos bajo cierto tipo de solicitudes. Para piezas prismáticas las hipótesis más comunes son
  • Ecuación constitutiva que establece una relación entre las deformaciones deducibles de la hipótesis cinemática y las tensiones asociadas. Estas ecuaciones son casos siempre casos particulares de las ecuaciones de Lamé-Hooke.
  • Ecuaciones de equivalencia, que relacionan las tensiones con los esfuerzos internos.
  • Ecuaciones de equilibrio que relacionan los esfuerzos internos con las fuerzas exteriores.

La aplicación práctica resulta sin embargo mucho más sencilla ya que generalmente se reduce a construir un esquema ideal de cálculo a base de elementos unibidemensionales o bidimensionales, y aplicar fórmulas preestablecidas en base al tipo de solicitación que presentan los elementos. La resolución práctica de un problema de resistencia de materiales sigue los siguientes pasos:

  1. Cálculo de esfuerzos. Se plantean las ecuaciones de equilibrio y ecuaciones de compatibilidad subsidiarias, que permiten encontrar los esfuerzos internos en función de las fuerzas aplicadas.
  2. Análisis resistente, se calculan las tensiones a partir de los esfuerzos internos. La relación entre tensiones y deformaciones depende del tipo de solicitación y de la hipótesis cinemática asociada: flexión de Bernouilli, flexión de Timoshenko, tracción, pandeo, torsión de Coulomb, teoría de Collignon para tensiones cortantes, etc.
  3. Análisis de rigidez, se calculan los desplazamientos máximos a partir de las fuerzas aplicadas o los esfuerzos internos. Para ello puede recurrirse directamente a la forma de la hipótesis cinemática o bien a la ecuación de la curva elástica, las fórmulas vectoriales de Navier-Bresse o los teoremas de Castigliano.

[editar] Hipótesis cinemática

[editar] Ecuación constitutiva

[editar] Ecuaciones de equivalencia

Las ecuaciones de equivalencia expresan los esfuerzos resultantes a partir de la distribución detensiones. Gracias a ese cambio es posible escribir ecuaciones de equilibrio que relacionen directamente las fuerzas aplicadas con los esfuerzos internos.

En elementos lineales rectos las coordenadas cartesinas para representar la geometría y expresar tensiones y esfuerzos, se escogen normalmente con el eje X paralelo al eje baricéntrico de la pieza, y los ejes Y y Z coincidiendo con las direcciones principales de inercia. En ese sistema de coordenadas la relación entre esfuerzo normal (Nx), esfuerzos cortantes (Vy, Vz), el momento torsor (Mx) y los momentos flectores (My, Mz) es:

\begin{matrix}   N_x = \int_\Sigma \sigma_{x} dydz & V_y = \int_\Sigma \tau_{xy} dydz & V_z = \int_\Sigma \tau_{xz} dydz \\   M_x = \int_\Sigma (-\tau_{xy}z +\tau_{xz}y) dydz & M_y = \int_\Sigma z\sigma_{xx} dydz & M_z = \int_\Sigma -y\sigma_{xx} dydz \end{matrix}


Donde las tensiones que aparecen son las componentes del tensor tensión para una pieza prismática:

[T]_{xyz} = \begin{bmatrix}   \sigma_x & \tau_{xy} & \tau_{xz} \\   \tau_{xy} & 0 & 0 \\   \tau_{xz} & 0 & 0 \end{bmatrix}


Para elementos bidimensionales es común tomar un sistema de dos coordenadas (cartesiano o curvilineo) coincidentes con la superficie media, estando la tercera coordenada alineada con el espesor. Para una placa plana de espesor 2t y con un sistema de coordenadas en el que el plano XY coincide con su plano medio. Los momentos flectores y momento torsor por unidad de área en función de las tensiones vienen dados por:

\begin{matrix}   m_x = \int_{-t}^{t} z\sigma_{xx} dz & m_y = \int_{-t}^{t} z\sigma_{yy} dz & m_{xy} = \int_{-t}^{t} z\sigma_{xy} dz \end{matrix}


Donde las tensiones que aparecen son las componentes del tensor tensión para una pieza prismática:

[T]_{xyz} = \begin{bmatrix}   \sigma_{xx} & \sigma_{xy} & 0 \\   \sigma_{xy} & \sigma_{yy} & 0 \\   0 & 0 & 0 \end{bmatrix}

[editar] Ecuaciones de equilibrio

[editar] Véase también

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Sub-domains

CDRoms - Magnatune - Librivox - Liber Liber - Encyclopaedia Britannica - Project Gutenberg - Wikipedia 2008 - Wikipedia 2007 - Wikipedia 2006 -

Other Domains

https://www.classicistranieri.it - https://www.ebooksgratis.com - https://www.gutenbergaustralia.com - https://www.englishwikipedia.com - https://www.wikipediazim.com - https://www.wikisourcezim.com - https://www.projectgutenberg.net - https://www.projectgutenberg.es - https://www.radioascolto.com - https://www.debitoformtivo.it - https://www.wikipediaforschools.org - https://www.projectgutenbergzim.com