Web - Amazon

We provide Linux to the World


We support WINRAR [What is this] - [Download .exe file(s) for Windows]

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
SITEMAP
Audiobooks by Valerio Di Stefano: Single Download - Complete Download [TAR] [WIM] [ZIP] [RAR] - Alphabetical Download  [TAR] [WIM] [ZIP] [RAR] - Download Instructions

Make a donation: IBAN: IT36M0708677020000000008016 - BIC/SWIFT:  ICRAITRRU60 - VALERIO DI STEFANO or
Privacy Policy Cookie Policy Terms and Conditions
Obszar H II - Wikipedia, wolna encyklopedia

Obszar H II

Z Wikipedii

NGC 604 - olbrzymi obszar H II w Galaktyce Trójkąta.
NGC 604 - olbrzymi obszar H II w Galaktyce Trójkąta.

Obszary H II to obłoki świecącego gazu i plazmy o rozmiarach nawet kilkuset lat świetlnych, w których powstają gwiazdy. Młode, gorące, niebieskie gwiazdy, które powstały z gazu emitują pokaźną ilość promieniowania ultrafioletowego, jonizując otaczającą mgławicę.

W ciągu kilku milionów lat w regionach H II może narodzić się kilka tysięcy gwiazd. Ostatecznie, eksplozje supernowych i silny wiatr gwiazdowy od najbardziej masywnych gwiazd należących do gromady gwiazdowej (wywodzącej się z obłoku H II) spowodują rozproszenie gazu należącego do tego regionu H II. Przykładem takiej gromady są Plejady.

Obszary H II swoją nazwę zawdzięczają dużym ilościom zjonizowanego wodoru, jaki zawierają, oznaczanego przez astronomów jako H II (obszar H I, to obłok neutralnego wodoru atomowego, a H2 - wodoru cząsteczkowego (molekularnego)). Mamy możliwość zaobserwowania regionów H II znajdujących się we Wszechświecie w znacznej odległości od nas, co ma duże znaczenie, ponieważ dzięki temu jesteśmy w stanie ustalić odległość od innych galaktyk, a także ich skład chemiczny.

Spis treści

[edytuj] Obserwacje

Ciemne obszary gwiazdotwórcze w Mgławicy Orła.
Ciemne obszary gwiazdotwórcze w Mgławicy Orła.

Kilka najjaśniejszych obszarów H II można zobaczyć gołym okiem, jednakże wydaje się, że żaden nie został dostrzeżony do czasu pojawienia się teleskopów we wczesnych latach XVII wieku. Nawet Galileusz nie zauważył mgławicy Oriona, gdy pierwszy raz obserwował w niej gromadę gwiazd (wcześniej skatalogowaną jako pojedyncza gwiazda θ Oriona przez Johanna Bayera). Francuskiemu obserwatorowi Nicolas-Claude Fabri de Peiresc przypisuje się odkrycie Mgławicy Oriona w 1610 roku. Od czasów tej wczesnej obserwacji, odkryto wiele obszarów H II w Naszej Galaktyce, a także innych galaktykach.

William Herschel obserwował Mgławicę Oriona w 1774 roku i opisał ją jako "nieukształtowaną, ognistą mgiełkę, chaotyczny materiał dla przyszłych słońc". Potwierdzenie tej hipotezy musiało czekać kolejne 100 lat, gdy William Huggins (przy udziale żony, Mary Huggins) użył spektroskopu do obserwaji różnych mgławic. Niektóre, takie jak Galaktyka Andromedy posiadały widma bardzo podobne do widm gwiazd i okazały się (później) być galaktykami, składającymi się z setek milionów pojedynczych gwiazd. Inne wyglądały zupełnie inaczej niż silne kontinuum z nałożonymi liniami absorpcyjnymi - Mgławica Oriona i inne podobne obiekty posiadały niewielką liczbę linii emisyjnych [1]. Najjaśniejszą była linia na długości fali 500,7 nm, która nie odnosiła się do linii żadnego znanego pierwiastka chemicznego. Początkowo stawiano hipotezy, że linia ta mogła pochodzić od nieznanego pierwiastka, który nazwano nebulium – podobny pomysł doprowadził do odkrycia helu poprzez analizę widma Słońca w 1868 roku.

Jednakże, o ile hel został odseparowany z powietrza krótko po odkryciu jego linii w widmie Słońca, to w przypadku nebulium już się to nie udało. We wczesnych latach 20. XX w. Henry Norris Russell zaproponował, że linia 500,7 nm nie pochodzi od nieznanego pierwiastka, a raczej od znanego pierwiastka występującego w nieznanych ówcześnie warunkach.

Fizycy wykazali w latach 20. XX w., że w gazie przy ekstremalnie niskich gęstościach, elektrony mogą zapełniać metastabilne poziomy energetyczne w atomach i jonach, które przy wyższych gęstościach szybciej tracą te stany energetyczne w wyniku zderzeń[2]. Przejścia elektronów z tych poziomów w tlenie emitują fale o długości 500,7 nm. Takie linie widmowe, które można zaobserwować tylko w przypadku gazów o niskich gęstościach, noszą nazwę linii wzbronionych. Stąd obserwacje spektroskopowe wykazały, że mgławice składają się z bardzo rozrzedzonego gazu.

W XX wieku obserwacje ujawniły, że rejony H II często zawierają gorące, jasne gwiazdy. Są one wiele razy masywniejsze od Słońca i przez to żyją znacznie krócej, a cykle ich życia wynoszą tylko kilka milionów lat (w porównaniu do gwiazd podobnych do Słońca, które żyją kilka miliardów lat). Stąd wnioskowano, że obszary H II muszą być rejonami, w których powstają nowe gwiazdy. W ciągu kilku milionów lat gromada gwiazd uformuje się w obszarze H II, zanim wiatr gwiazdowy i ciśnienie promieniowania od młodych, gorących gwiazd spowoduje rozproszenie mgławicy. Plejady są przykładem takiej gromady, która usunęła własny region H II, z którego pozostały jedynie resztki mgławicy refleksyjnej.

[edytuj] Pochodzenie i cykl życia

Mała część Mgławicy Tarantula, olbrzymiego regionu H II w Wielkim Obłoku Magellana.
Mała część Mgławicy Tarantula, olbrzymiego regionu H II w Wielkim Obłoku Magellana.

Prekursorem rejonu H II jest wielki obłok molekularny (ciemna mgławica). Wielki obłok molekularny jest bardzo zimną (10-20K) chmurą, składającą się głównie z wodoru cząsteczkowego. Takie obłoki mogą istnieć w stanie stabilnym przez długi czas, lecz fale uderzeniowe spowodowane przez wybuch supernowej, zderzenia obłoków gazu i oddziaływania magnetyczne mogą zapoczątkować zapadanie się części obłoku oraz jego fragmentację. Gdy to nastąpi, może dojść do procesu powstawania gwiazd (szerszy opis zjawiska w artykule ewolucja gwiazd).

Z czasem, gdy wewnątrz mgławicy ciemnej rodzą się gwiazdy, najmasywniejsze z nich osiągną wystarczająco wysokie temperatury do zjonizowania otaczającego gazu. Niedługo potem powstanie źródła promieniowania jonizującego, emitującego wysokoenergetyczne fotony, powoduje wytworzenie frontu jonizacyjnego, który wymiata otaczający gaz przy naddźwiękowych prędkościach. Przy coraz większej odległości od jonizującej gwiazdy czoło jonizacji zwalnia, podczas gdy ciśnienie nowo zjonizowanego gazu powoduje zwiększanie jego objętości. Ostatecznie, front jonizacji zwalnia do poddźwiękowych prędkości i zostaje wyprzedzony przez falę uderzeniową spowodowaną przez ekspansję mgławicy. W ten sposób rodzi się obszar H II [3].

Życie obszarów H II trwa kilka milionów lat. Ciśnienie promieniowania od młodych, gorących gwiazd ostatecznie wydmucha większą część gazu. W rzeczywistości cały proces wydaje się mało wydajny, gdyż mniej niż 10% gazu z rejonów H II uformuje gwiazdy, zanim jego reszta zostanie rozdmuchana. Udział w wywiewaniu gazu mają także eksplozje supernowych najbardziej masywnych gwiazd, które następują już po 1–2 milionach lat.

[edytuj] Gwiezdne żłobki

Globule Boka w regionie H II - IC 2944.
Globule Boka w regionie H II - IC 2944.

Szczegóły narodzin gwiazd wewnątrz obszarów H II są skryte przed nami przez gęste chmury gazu i pyłu, które otaczają powstające gwiazdy. Tylko wtedy, gdy ciśnienie promieniowania od gwiazdy rozpędzi otaczający "kokon", możemy ją zobaczyć. Wcześniej, gęste regiony, które zawierają młode gwiazdy są często widoczne w zarysie na tle pozostałej zjonizowanej mgławicy. Takie ciemne plamki noszą nazwę globul Boka, wywodzącą się od astronoma Barta Boka, który w latach 40. XX wieku zaproponował teorię, że mogą to być miejsca narodzin gwiazd.

Potwierdzenie hipotezy Boka musiało poczekać do roku 1990, kiedy obserwacje w podczerwieni w końcu pozwoliły spenetrować grubą warstwę pyłu globul Boka, ujawniając wewnątrz obecność młodych obiektów gwiazdowych. Obecnie uważa się, że globule Boka zawierają przeciętnie około 10 mas Słońca materii zawartej w przestrzeni o rozmiarach około roku świetlnego lub więcej i że w globulach Boka powstają najczęściej podwójne lub wielokrotne układy gwiazdowe[4][5][6].

Poza tym, że obszary H II są miejscami narodzin gwiazd, wykazują również dowody na posiadanie systemów planetarnych. Kosmiczny Teleskop Hubble'a wykrył setki dysków protoplanetarnych w mgławicy Oriona. Przynajmniej połowa młodych gwiazd w mgławicy Oriona wydaje się być otoczona przez dyski gazu i pyłu, w takich ilościach, iż uważa się, że zawierają wielokrotnie więcej materii, niż byłoby to potrzebne do stworzenia takiego systemu planetarnego, jak nasz.

[edytuj] Charakterystyka

[edytuj] Charakterystyka fizyczna

Obszary H II różnią się bardzo pomiędzy sobą we własnościach fizycznych. Ich rozmiary mieszczą się w zakresie od tak zwanych regionów "ultrazwartych" o średnicy prawdopodobnie około roku świetlnego lub mniej, do olbrzymich rejonów H II o średnicy kilkuset lat świetlnych. Ich gęstości wahają się od ponad miliona cząsteczek na cm3 w ultrazwartych obszarach H II, do tylko kilku cząsteczek na cm3 w najbardziej rozległych obszarach, co sugeruje, iż posiadają masy być może pomiędzy 102 a 105 M.

W zależności od rozmiaru rejonu H II, może w nim występować do około tysiąca gwiazd. To sprawia, że rejony H II są znacznie trudniejsze w zrozumieniu niż mgławice planetarne, które mają tylko jedno centralne, jonizujące źródło. Obszary H II mają typowo temperatury rzędu 10 000 K i są w większości zjonizowane. Plazma może posiadać pole magnetyczne o sile kilkudziesięciu mikrogaussów [7]. Pola magnetyczne są wytwarzane przez naładowane cząstki poruszające się w plazmie i niektóre obserwacje sugerują, że obszary H II zawierają też pola elektryczne[8].

Rejony H II składają się w 90% z wodoru. Najsilniejsze linie emisyjne wodoru przy długości 656,3 nm nadają obszarom H II charakterystyczny czerwony kolor. Pozostała część regionów H II składa się z helu oraz śladowych ilości cięższych pierwiastków. Zauważa się w galaktykach, że ze wzrastającą odległością od jądra galaktyki w obszarach H II spada ilość ciężkich pierwiastków. Jest to spowodowane tym, że w przeciągu życia galaktyki tempo procesów gwiazdotwórczych było większe w gęstszych regionach centralnych, powodując większe wzbogacenie ośrodka międzygwiazdowego w produkty nukleosyntezy.

[edytuj] Liczebność i rozmieszczenie

Sznury czerwonych obszarów H II nakreślają ramiona Galaktyki Wirowej.
Sznury czerwonych obszarów H II nakreślają ramiona Galaktyki Wirowej.

Obszary H II występują jedynie w galaktykach spiralnych, jak nasza własna Galaktyka, oraz w galaktykach nieregularnych. Nie odkryto ich do tej pory w galaktykach eliptycznych. W galaktykach nieregularnych mogą znajdować się w każdym miejscu, natomiast w galaktykach spiralnych są rozmieszczone wzdłuż ramion spiralnych. Duża galaktyka spiralna może zawierać tysiące regionów H II.

Uważa się, że powodem dla którego nie znajduje się rejonów H II w galaktykach eliptycznych jest to, że eliptyczne powstają poprzez łączenie się galaktyk. W gromadach galaktyk takie fuzje są częste. Gdy dochodzi do zderzenia galaktyk, pojedyncze gwiazdy prawie nigdy się nie zderzają, lecz olbrzymie obłoki molekularne i obszary H II w zderzających się galaktykach zostają poważnie zaktywizowane. W takich warunkach dochodzi do uruchomienia procesów bardzo gwałtownego tworzenia gwiazd, co zachodzi tak szybko, że większość gazu trafia do powstających gwiazd, w przeciwieństwie do 10% gazu, lub mniej, w zwykłych warunkach. Galaktyki przechodzące tak szybki proces powstawania gwiazd noszą nazwę galaktyk masywnego gwiazdotworzenia (lub galaktyk aktywnych gwiazdotwórczo, ang. starburst galaxies). Galaktyki eliptyczne po okresie kolizji zawierają bardzo niewiele gazu i przez to obszary H II nie mogą się już tworzyć.

Niedawne obserwacje wykazały, że ogólnie rzecz biorąc, bardzo niewielka liczba rejonów H II znajduje się poza obrębem galaktyk. Takie międzygalaktyczne obszary H II są prawdopodobnie pozostałościami mniejszych galaktyk rozerwanych przez siły pływów grawitacyjnych[9].

[edytuj] Morfologia

Obszary H II występują w ogromnej różnorodności rozmiarów. Każda gwiazda w regionie H II jonizuje z grubsza sferyczny obszar otaczający ją, zwany strefą Strömgrena lecz połączenie bąbli jonizacji wielokrotnych układów gwiazdowych w rejonie H II oraz ekspansji podgrzanych mgławic w otaczające gazy o ostrych gradientach gęstości daje w wyniku skomplikowane kształty. Wybuchy supernowych także wpływają na kształt obszarów H II. W pewnych przypadkach, powstawanie dużych gromad gwiazdowych w regionie H II daje w rezultacie obszary wyglądające na wydrążone od środka. Tak jest w przypadku NGC 604, olbrzymiego obszaru H II w galaktyce Trójkąta.

[edytuj] Godne uwagi rejony H II

W naszej Galaktyce, najlepiej znanym obszarem H II jest Mgławica Oriona, która leży 1500 lat świetlnych stąd. Mgławica Oriona jest częścią ogromnego obłoku molekularnego, który wypełniłby większą część gwiazdozbioru Oriona, gdyby był widzialny. Mgławica Koński Łeb i Pętla Barnarda to dwie inne oświetlone części tej chmury gazu.

Wielki Obłok Magellana, galaktyka satelicka Drogi Mlecznej, zawiera ogromny obszar H II zwany Mgławicą Tarantula. Ta mgławica jest znacznie większa niż mgławica Oriona i tworzy tysiące gwiazd; niektóre z nich posiadają masę ponad 100 mas Słońca. Gdyby mgławica Tarantula była tak blisko Ziemi, jak mgławica Oriona, świeciłaby w przybliżeniu tak jasno jak Księżyc w pełni na nocnym niebie. Supernowa SN 1987A wybuchła na obrzeżu mgławicy Tarantula.

Mgławica NGC 604 jest jeszcze większa niż mgławica Tarantula, ma rozmiary rzędu 1300 lat świetlnych, chociaż zawiera mniejszą liczbę gwiazd. Jest to jeden z największych obszarów H II w Grupie Lokalnej.

[edytuj] Aktualne kwestie w badaniach nad rejonami H II

Obrazy uzyskane w promieniowaniu widzialnym ujawniają gaz i pył w mgławicy Oriona, a obraz w podczerwieni (po prawej) ujawnia nowe gwiazdy świecące wewnątrz niej.
Obrazy uzyskane w promieniowaniu widzialnym ujawniają gaz i pył w mgławicy Oriona, a obraz w podczerwieni (po prawej) ujawnia nowe gwiazdy świecące wewnątrz niej.

Podobnie jak w przypadku mgławic planetarnych, określenie składu pierwiastkowego w obszarach H II jest niepewne. Istnieją dwie różne metody wyznaczenia ilości metali (tj. pierwiastków cięższych niż wodór i hel) w mgławicach, opierające się na analizie typów linii widmowych. Różnice pomiędzy wynikami obu metod wprowadzają często duże rozbieżności. Niektórzy astronomowie przypisują je obecności niewielkich fluktuacji temperatur wewnątrz obszarów H II. Wg innych rozbieżności są zbyt duże, aby wyjaśnić je efektem temperaturowym. Prowadzi to do hipotezy głoszącej, że obserwowane różnice da się wyjaśnić istnieniem zimnych skupisk zawierających niewielkie ilości wodoru[10].

Pełne szczegóły masywnego powstawania gwiazd w obszarach H II nie są do tej pory dobrze poznane. Dwa główne problemy utrudniają badania na tym polu. Pierwszy, to znacząca odległość dużych obszarów H II od Ziemi, przy czym najbliższy rejon H II znajduje się ponad 1000 lat świetlnych stąd, a inne są położone w odległości kilka razy większej. Po drugie, powstawanie gwiazd jest silnie przesłonięte przez pył i obserwacje w świetle widzialnym są niemożliwe. Fale radiowe i światło podczerwone mogą przenikać pył, ale najmłodsze gwiazdy mogą nie emitować wystarczającej ilości energii w tych zakresach długości fali.

[edytuj] Bibliografia

  1. Huggins W., Miller W.A. (1864). On the Spectra of some of the Nebulae, Philosophical Transactions of the Royal Society of London, v.154, p.437
  2. Bowen, I.S. (1927). The Origin of the Chief Nebular Lines, Publications of the Astronomical Society of the Pacific, v.39, p.295
  3. Franco J., Tenorio-Tagle G., Bodenheimer P. (1990). On the formation and expansion of H II regions, Astrophysical Journal, v.349, p.126
  4. Yun J.L., Clemens D.P. (1990). Star formation in small globules – Bart Bok was correct, Astrophysical Journal, v.365, p.73
  5. Clemens D.P., Yun, J.L., Heyer M.H. (1991). Bok globules and small molecular clouds – Deep IRAS photometry and (C-12)O spectroscopy, Astrophysical Journal Supplement, v.75, p.877
  6. Launhardt R., Sargent A.I., Henning T et al (2002). Binary and multiple star formation in Bok globules, Proceedings of IAU Symposium No. 200 on The Formation of Binary Stars. Eds Reipurth & Zinnecker, p.103
  7. Heiles C., Chu Y.-H., Troland T.H. (1981), Magnetic field strengths in the H II regions S117, S119, and S264, Astrophysical Journal Letters, v. 247, p. L77-L80
  8. Carlqvist P, Kristen H, Gahm G.F. (1998), Helical structures in a Rosette elephant trunk, Astronomy and Astrophysics, v.332, p.L5-L8
  9. Oosterloo T., Morganti R., Sadler E.M. et al (2004). Tidal Remnants and Intergalactic H II Regions, IAU Symposium no. 217, Sydney, Australia. Eds Duc, Braine and Brinks. San Francisco: Astronomical Society of the Pacific, 2004., p.486
  10. Tsamis Y.G., Barlow M.J., Liu X-W. et al (2003). Heavy elements in Galactic and Magellanic Cloud H II regions: recombination-line versus forbidden-line abundances, Monthly Notices of the Royal Astronomical Society, v.338, p.687

[edytuj] Linki zewnętrzne

Our "Network":

Project Gutenberg
https://gutenberg.classicistranieri.com

Encyclopaedia Britannica 1911
https://encyclopaediabritannica.classicistranieri.com

Librivox Audiobooks
https://librivox.classicistranieri.com

Linux Distributions
https://old.classicistranieri.com

Magnatune (MP3 Music)
https://magnatune.classicistranieri.com

Static Wikipedia (June 2008)
https://wikipedia.classicistranieri.com

Static Wikipedia (March 2008)
https://wikipedia2007.classicistranieri.com/mar2008/

Static Wikipedia (2007)
https://wikipedia2007.classicistranieri.com

Static Wikipedia (2006)
https://wikipedia2006.classicistranieri.com

Liber Liber
https://liberliber.classicistranieri.com

ZIM Files for Kiwix
https://zim.classicistranieri.com


Other Websites:

Bach - Goldberg Variations
https://www.goldbergvariations.org

Lazarillo de Tormes
https://www.lazarillodetormes.org

Madame Bovary
https://www.madamebovary.org

Il Fu Mattia Pascal
https://www.mattiapascal.it

The Voice in the Desert
https://www.thevoiceinthedesert.org

Confessione d'un amore fascista
https://www.amorefascista.it

Malinverno
https://www.malinverno.org

Debito formativo
https://www.debitoformativo.it

Adina Spire
https://www.adinaspire.com