Wikipedia for Schools in Portuguese is available here
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
SITEMAP
Make a donation: IBAN: IT36M0708677020000000008016 - BIC/SWIFT:  ICRAITRRU60 - VALERIO DI STEFANO or
Privacy Policy Cookie Policy Terms and Conditions
Ressonância magnética - Wikipédia

Ressonância magnética

Origem: Wikipédia, a enciclopédia livre.

Exame de R.M. a um wikipedista anglófono, do topo do cérebro à base. O pequeno ponto em cima à esquerda era uma cápsula de Vitamina E para servir de orientação na compilação das imagens.
Exame de R.M. a um wikipedista anglófono, do topo do cérebro à base. O pequeno ponto em cima à esquerda era uma cápsula de Vitamina E para servir de orientação na compilação das imagens.

Ressonância Magnética é uma técnica que permite determinar propriedades de uma substância através do correlacionamento da energia absorvida contra a frequência, na faixa de megahertz (MHz) do espectro eletromagnético, caracterizando-se como sendo uma espectroscopia. Usa as transições entre níveis de energia rotacionais dos núcleos componentes das espécies (átomos ou íons) contidas na amostra. Isso se dá necessariamente sob a influência de um campo magnético e sob a concomitante irradiação de ondas de rádio na faixa de frequências acima citada.

Índice

[editar] Histórico

O conceito de spin surgiu da necessidade de se explicar os resultados até então impensados na experiência de Stern-Gerlach na década de 1920. Nessa experiência, um feixe colimado de átomos de prata, oriundos de um forno a alta temperatura, atravessavam um campo magnético altamente não-homogêneo. Tal experimento era destinado a medir a distribuição dos momentos magnéticos, devidos principalmente aos eletrões. Como os átomos, na temperatura em que estavam emergindo do forno, estavam no seu estado fundamental 1S0, deveriam sofrer desvios nulos na presença do campo magnético não-homegêneo. A distribuição esperada era da perda da coerência espacial do feixe durante o seu tempo de vôo, do forno de origem até o alvo. Tal não sucedeu, contudo.

O resultado obtido foram duas manchas de depósito de prata sobre o alvo, indicando que o feixe se dividira em dois durante o percurso. Isso indicou que os átomos de prata do feixe ainda tinham um grau de liberdade de momento angular, mas que não era o momento angular orbital dos elétrons no átomo, mas sim um momento angular intrínseco destas pertículas. A esse "momento angular intrínseco" deu-se o nome de spin (significando giro em Português)

Em 1924, Wolfgang Pauli postulou que os núcleos se comportariam como minúsculos ímãs. Mais tarde, experimentos similares, porém mais sofisticados, aos do Stern-Gerlach determinaram momentos magnéticos nucleares de várias espécies.

Posteriormente, em 1939, Rabi e colaboradores submeteram um feixe molecular de hidrogênio (H2) em alto vácuo a um campo magnético não-homogêneo em conjunto com uma radiação na faixa das radio-freqüências (RF). Para um certo valor de freqüência o feixe absorvia energia e sofria pequeno desvio. Isso era constatado como uma queda da intensidade observada do feixe na região do detector. Este experimento marca, historicamente, a primeira observação do efeito da ressonância magnética nuclear.

Nos anos de 1945 e 1946 duas equipes, uma de Bloch e seus colaboradores na Universidade de Stanford, e outra de Purcell e colaboradores na Universidade de Harvard procurando aprimorar a medida de momentos magnéticos nucleares observaram sinais de absorção de radio-freqüência dos núcleos de 1H na água e na parafina, respectivamente, pelo que os dois grupos foram agraciados com o prêmio Nobel de Física em 1952.

Quando Packard e outros assistentes de Bloch substituíram a água por etanol, em 1950 e 1951, e notaram que havia três sinais (um tripleto) e não somente um sinal (um singleto)1 ficaram decepcionados. Entretanto, esse aparente fracasso veio a indicar alguns dos aspectos mais poderosos da técnica: a múltipla capacidade de identificar a estrutura pela análise de parâmetros originados de acoplamentos mútuos de grupos de núcleos interagentes.

Pouco tempo depois, em 1953, já eram produzidos os primeiros espectrômetros de RMN no mercado, já com uma elevada resolução e grande sensibilidade.

Nos equipamentos de ressonância magnética para imageamento biológico, os núcleos do átomos de hidrogênio presentes no objeto de análise são alinhados por um forte campo magnético e localizados por bobina receptora devidamente sintonizada na frequência de ressonância destes.

Animação: ressonância magnética
Ampliar
Animação: ressonância magnética
Nesta imagem encontra-se um cérebro a ser auscultado por ressonância magnética.
Ampliar
Nesta imagem encontra-se um cérebro a ser auscultado por ressonância magnética.

[editar] Espectroscopia de ressonância magnética nuclear

Em espectroscopia, a o processo de ressonância magnética é similar aos demais. Pois, também ocorre a absorção ressonante de energia eletromagnética, ocasionada pela transição entre níveis de energia rotacionais dos núcleos atômicos, níveis estes desdobrados em função do campo magnético através do efeito Zeeman anômalo.

Como o campo magnético efetivo sentido pelo núcleo é levemente afetado (perturbação essa geralmente medida em escala de partes por milhão) pelos débeis campos eletromagnéticos gerados pelos eletrons envolvidos nas ligações químicas (o chamado ambiente químico nas vizinhanças do núcleo em questão), cada núcleo responde diferentemente de acordo com sua localização no objeto em estudo, atuando assim como uma sonda sensível à estrutura onde se situa.

[editar] Magnetismo Macroscópico e Microscópico

O efeito da ressonância magnética nuclear se fundamenta basicamente na absorção ressonante de energia eletromagnética na faixa de freqüências das ondas de rádio. Mais especificamente nas faixas de VHF.

Mas a condição primeira para absorção de energia por esse efeito é de que os núcleos em questão tenham momento angular diferente de zero.

Núcleos com momento angular igual a zero não tem momento magnético, o que é condição indispensável a apresentarem absorção de energia electromagnética. Razão, aliás, pertinente a toda espectroscopia.

A energia electromagnética só pode ser absorvida se um ou mais momentos de multipolo do sistema passível de absorvê-la são não nulos, além do momento de ordem zero para electricidade (equivalente à carga total).

Para a maior parte das espectroscopias, a contribuição mais importante é aquela do momento de dipolo. Se esta contribuição variar com o tempo, devido a algum movimento ou fenômeno periódico do sistema (vibração, rotação, etc), a absorção de energia da onda electromagnética de mesma freqüência (ou com freqüências múltiplas inteiras) pode acontecer.

Um campo magnético macroscópico é denotado pela grandeza vetorial conhecida como indução magnética B (ver Equações de Maxwell). Esta é a grandeza observável nas escalas usuais de experimentos, e no sistema SI é medida em Tesla, que é equivalente a Weber/m3.

A nível microscópico, temos outra grandeza relacionada, o campo magnético H, que é o campo que se observa a nível microscópico. No sistema SI é medido em Ampere/m.

O vetor dipolo magnético μ é um dos momentos de multipolo magnéticos2 e é dado matematicamente por

\mathbf{\mu}= m\mathbf{l}

onde

  • m é o polo magnético
  • l é o vetor distancia entre os polos do sentido S → N

Para os trabalhos práticos, lida-se com o vetor magnetização M que é um vetor representativo de todos os vetores μ sobre um volume V:


\mathbf{M}=\frac{1}{V}\sum_{}^{}\mu


M é, portanto, uma grandeza intensiva

No vácuo, existe uma relação matemática entre o vetor B e o vetor H:


\mathbf{B} = \mu_0 \mathbf{H}


onde μ0 é a permeabilidade magnética no vácuo.


Para meios materiais, a relação válida é a seguinte:


\mathbf{B} = \mu_0 \left(\mathbf{H}+\mathbf{M}\right)

[editar] Spin & momento angular

Rigorosamente, núcleos não apresentam spin, mas sim momento angular (exceção feita somente ao núcleo do isótopo 1 do hidrogênio, que é constituído de um único próton). Embora o spin possa ser considerado um momento angular, por terem ambos as mesmas unidades e serem tratados por um formalismo matemático e físico semelhante, nem sempre o oposto ocorre. O spin é intrínseco, ao passo que objetos compostos tem momento angular extrínseco. Contudo, motivos históricos e continuado costume levaram à esse abuso de linguagem, tolerado e talvez tolerável em textos não rigorosos. Um motivo a mais de complicação é o fato de que a moderna física de partículas considerar que certas partículas, antes pensadas como elementares (e portanto possuindo spin), sejam compostas (próton e nêutron compostos de quarks). Assim, fica um tanto impreciso o limite entre os casos onde se deva usar o termo spin e os casos onde se deva usar o termo momento angular.

[editar] Imageamento biológico

A técnica da Ressonância Magnética Nuclear é usada em Medicina e em Biologia como meio de formar imagens internas de corpos humanos e de animais, bem como de seres microscópicos (como no caso da microscopia de RMN). Para tanto, a aquisição de sinal se faz de um jeito ligeiramente diferente, já que as informações sobre as posições de cada espécie contribuinte para a formação do sinal precisam ser levadas em conta.

Por isso, para imageamento de uma amostra, é necessário que a aparelhagem coloque a aquisição de sinal em função da posição. Esta função matemática é de \mathbb{R}^3 em \mathbb{R}, e essa informação é suprida através de aplicação de um campo magnético que apresenta um gradiente tridimensional. Assim, para cada posição da amostra, dentro da margem de erro resultante da resolução, a aquisição é levemente diferente. O resultado então é tratado pela transformada de Fourier (especificamente FFT: Fast Fourier Transform), sendo resolvido a partir daí no espaço e não mais em frequência.

[editar] Notas

  1. Ver multiplicidade
  2. Para campos magnéticos, só subsistem os momentos de multipolo de ordem par, pelo motivo de que inexistem monopolos magnéticos (até onde se saiba, embora as buscas existam, baseado em argumentos quanto-mecânicos)

[editar] Referências

  • Victor M.S. Gil e Carlos F.G.C. Geraldes - Ressonância Magnética Nuclear - Fundamentos, Métodos e Aplicações - Fundação Calouste Gulbenkian - Coimbra - Portugal - 1987
  • R. K. Harris e E.B.Mann - NMR and the Periodic Table - Academic Press - London -1978
  • R. K. Harris - Nuclear Magnetic Resonance Spectroscopy - A Physicochemical View - Longman Scientific & Tecnical -Essex -England
  • J. W. Hennel e J. Klinowski - Fundamentals of Nuclear Magnetic Resonance - Longman Scientific & Tecnical - Essex - England - 1993
  • J. Mason (Editor) - Multinuclear NMR - Plenum Press - New York -1989
  • Jasper D. Memory - Quantum Theory of Magnetic Resonance Parameters - McGraw-Hill Book Co. - New York - 1968
  • A. I. Popov e K. Hallenga - Modern NMR Techniques and Their Application in Chemistry - Marcel Dekker, Inc - New York - 1991
  • P.Sohar - CRC Nuclear Magnetic Resonance Spectroscopy Vol. I, II e III - CRC Press, Inc - Boca Raton - Florida - USA

[editar] Ver

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Sub-domains

CDRoms - Magnatune - Librivox - Liber Liber - Encyclopaedia Britannica - Project Gutenberg - Wikipedia 2008 - Wikipedia 2007 - Wikipedia 2006 -

Other Domains

https://www.classicistranieri.it - https://www.ebooksgratis.com - https://www.gutenbergaustralia.com - https://www.englishwikipedia.com - https://www.wikipediazim.com - https://www.wikisourcezim.com - https://www.projectgutenberg.net - https://www.projectgutenberg.es - https://www.radioascolto.com - https://www.debitoformtivo.it - https://www.wikipediaforschools.org - https://www.projectgutenbergzim.com