Miguel de Cervantes y Saavedra - Don Quijote de la Mancha - Ebook:
HTML+ZIP- TXT - TXT+ZIP

Wikipedia for Schools (ES) - Static Wikipedia (ES) 2006
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
SITEMAP
Make a donation: IBAN: IT36M0708677020000000008016 - BIC/SWIFT:  ICRAITRRU60 - VALERIO DI STEFANO or
Privacy Policy Cookie Policy Terms and Conditions
Luz - Wikipedia, la enciclopedia libre

Luz

De Wikipedia, la enciclopedia libre

Para otros usos de este término, véase Luz (desambiguación).
Un prisma descompone la luz
Aumentar
Un prisma descompone la luz

La luz (del latín lux, lucis) es una onda electromagnética capaz de ser percibida por el ojo humano y cuya frecuencia determina su color.

Tabla de contenidos

[editar] El espectro electromagnético

En términos generales, el espectro electromagnético abarca, según un orden creciente de frecuencia:

[editar] El espectro visible

Espectro visible
Aumentar
Espectro visible

La luz visible forma parte de una estrecha franja que va desde longitudes de onda de 380 nm (violeta) hasta los 780 nm (rojo). Los colores del espectro se ordenan como en el arco iris, formando el llamado espectro visible.

Frecuencia y longitud de onda se relacionan por la expresión:

c = f~\lambda \,\!

donde c es la velocidad de la luz en el vacío, frecuencia f ó ν, y longitud de onda λ.

[editar] Objetos visibles

Hay dos tipos de objetos visibles: aquellos que por sí mismos emiten luz y los que la reflejan. El color de estos depende del espectro de la luz que incide y de la absorción del objeto, la cual determina qué ondas son reflejadas.

La luz blanca se produce cuando todas las longitudes de onda del espectro visible están presentes en proporciones e intensidades iguales.

¿Por qué el ojo humano es sensible precisamente a este pequeño rango del espectro radioeléctrico? Las ondas que tienen menor frecuencia que la luz (por ejemplo la radio), tienen mayor longitud de onda, por eso rodean los objetos sin interaccionar con ellos, gracias a esto tenemos cobertura en el móvil aunque estemos dentro de casa. Las ondas de mayor frecuencia que la luz tienen una longitud de onda tan pequeña que atraviesan la materia, por ejemplo los rayos X atraviesan algunos materiales como la carne humana, aunque no los huesos. Es sólo en la franja del espectro que va desde el violeta hasta el rojo donde las ondas electromagnéticas interaccionan (se reflejan o absorben) con la materia y nos permiten ver los objetos, sus formas, su posición, y dentro de esta franja del espectro podemos determinar qué frecuencia o conjunto de frecuencias refleja o emite cada objeto, es decir, el color que tiene.

[editar] Naturaleza de la luz

[editar] Teoría corpuscular

Newton descubre en 1666 que la luz natural, al pasar a través de un prisma es separada en una gama de colores que van desde el rojo al azul. Newton concluye que la luz blanca o natural está compuesta por todos lo colores del arcoiris.

Isaac Newton propuso una teoría corpuscular para la luz en contraposición a un modelo ondulatorio propuesto por Huygens. Supone que la luz está compuesta por una granizada de corpusculos o partículas luminosas, los cuales se propagan en línea recta , pueden atravesar medios transparentes y ser reflejados por materias opacas. Esta teoría explica la propagación rectilínea de la luz, la refracción y reflexión; pero no explica los anillos de Newton (irisaciones en las láminas delgadas de los vidrios), que sí lo hace la teoría de Huygens como veremos más adelante, ni tampoco los fenómenos de interferencia y difracción.

Newton, experimentalmente demostró que la luz blanca, al traspasar un prisma, se dispersa en rayos de colores y que éstos, a su vez, al pasar por un segundo prisma no se descomponen, sino que son homogéneos. De esta descomposición de la luz deduce y demuestra que al dejar caer los rayos monocromáticos sobre un prisma, éstos se recombinan para transformarse en luz blanca. Se desprende así que ésta resulta de una combinación varia de rayos coloreados que poseen diferentes grados de refrangibilidad; desde el violeta –el más refrangible- hasta el rojo –que tiene el menor índice de refracción -. La banda de los colores prismáticos forma el espectro, cuya investigación y estudio conduciría, en la segunda mitad del siglo XIX, a varios hallazgos ribeteados con el asombro.

Tal como ya lo enunciamos en párrafos precedentes, Newton consideró a la luz semejante a un flujo de proyectiles que son emitidos por un cuerpo que genera luminosidad. Supuso que la visión era la consecuencia de la colisión de granizadas de proyectiles que impactaban en los ojos. Con su hipótesis corpuscular, intentó explicar el hermoso fenómeno de los anillos de colores engendrados por láminas delgadas (los famosos anillos de Newton) e interpretó igualmente la refracción de la luz dentro de la hipótesis corpuscular, aceptando que las partículas luminosas, al pasar de un ambiente poco denso (aire) a otro más denso (cristales), aumentan su velocidad debido a una atracción más fuerte. Esta conclusión, en nada es coincidente, como veremos más adelante, con la teoría ondulatoria de la luz, la que propugna una propagación más lenta de la luz en el paso a través de materiales más densos.

La teoría sobre una naturaleza corpuscular de la luz, sustentada por el enorme prestigio de Newton, prevaleció durante el siglo XVIII, pero debió ceder hacia mediados del siglo XIX frente a la teoría ondulatoria que fue contrastada con éxito con la experiencia. Ahora, como también veremos más adelante, el descubrimiento de nuevos fenómenos ha llevado –sin arrinconar la teoría ondulatoria- a una conciliación de ambas ponencias teóricas.

[editar] Teoría ondulatoria

Propugnada por Christian Huygens en el año 1678, describe y explica lo que hoy se considera como leyes de reflexión y refracción. Define a la luz como un movimiento ondulatorio semejante al que se produce con el sonido. Ahora, como los físicos de la época consideraban que todas las ondas requerían de algún medio que las transportaran en el vacío, para las ondas lumínicas se postula como medio a una materia insustancial e invisible a la cual se le llamó éter (cuestión que es tratada con mayores detalles en la separata 4.03 de este mismo capítulo).

Justamente la presencia del éter fue el principal medio cuestionador de la teoría ondulatoria. En ello, es necesario equiparar las vibraciones luminosas con las elásticas transversales de los sólidos sin que se transmitan, por lo tanto, vibraciones longitudinales. Aquí es donde se presenta la mayor contradicción en cuanto a la presencia del éter como medio de transporte de ondas, ya que se requeriría que éste reuniera alguna característica sólida pero que a su vez no opusiera resistencia al libre tránsito de los cuerpos sólidos. (Las ondas transversales sólo se propagan a través de medios sólidos.)

En aquella época, la teoría de Huygens no fue muy considerada, fundamentalmente, y tal como ya lo mencionamos, dado al prestigio que alcanzó Newton. Pasó más de un siglo para que fuera tomada en cuenta la Teoría Ondulatoria de la luz. Los experimentos del médico inglés Thomas Young sobre los fenómenos de interferencias luminosas, y los del físico francés Auguste Jean Fresnel sobre la difracción fueron decisivos para que ello ocurriera y se colocara en la tabla de estudios de los físicos sobre la luz, la propuesta realizada en el siglo XVII por Huygens.

Young demostró experimentalmente el hecho paradójico que se daba en la teoría corpuscular de que la suma de dos fuentes luminosas pueden producir menos luminosidad que por separado. En una pantalla negra practica dos minúsculos agujeros muy próximos entre sí: al acercar la pantalla al ojo, la luz de un pequeño y distante foco aparece en forma de anillos alternativamente brillantes y oscuros. ¿Cómo explicar el efecto de ambos agujeros que por separado darían un campo iluminado, y combinados producen sombra en ciertas zonas? Young logra explicar que la alternancia de las franjas por la imagen de las ondas acuáticas. Si las ondas suman sus crestas hallándose en concordancia de fase, la vibración resultante será intensa. Por el contrario, si la cresta de una onda coincide con el valle de la otra, la vibración resultante será nula. Deducción simple imputada a una interferencia y se embriona la idea de la luz como estado vibratorio de una materia insustancial e invisible, el éter, al cual se le resucita.

Ahora bien, la colaboración de Auguste Fresnel para el rescate de la teoría ondulatoria de la luz estuvo dada por el aporte matemático que le dio rigor a las ideas propuestas por Young y la explicación que presentó sobre el fenómeno de la polarización al transformar el movimiento ondulatorio longitudinal, supuesto por Huygens y ratificado por Young, quien creía que las vibraciones luminosas se efectuaban en dirección paralela a la propagación de la onda luminosa, en transversales. Pero aquí, y pese a las sagaces explicaciones que incluso rayan en las adivinanzas dadas por Fresnel, inmediatamente queda presentada una gran contradicción a esta doctrina, ya que no es posible que se pueda propagar en el éter la luz por medio de ondas transversales, debido a que éstas sólo se propagan en medios sólidos.

En su trabajo, Fresnel explica una multiplicidad de fenómenos manifestados por la luz polarizada. Observa que dos rayos polarizados ubicados en un mismo plano se interfieren, pero no lo hacen si están polarizados entre sí cuando se encuentran perpendicularmente. Este descubrimiento lo invita a pensar que en un rayo polarizado debe ocurrir algo perpendicularmente en dirección a la propagación y establece que ese algo no puede ser más que la propia vibración luminosa. La conclusión se impone: las vibraciones en la luz no pueden ser longitudinales, como Young lo propusiera, sino perpendiculares a la dirección de propagación, transversales.

Las distintas investigaciones y estudios que se realizaron sobre la naturaleza de la luz, en la época en que nos encontramos de lo que va transcurrido del relato, engendraron aspiraciones de mayores conocimientos sobre la luz. Entre ellas, se encuentra la de lograr medir la velocidad de la luz con mayor exactitud que la permitida por las observaciones astronómicas. Hippolyte Fizeau (1819- 1896) concretó el proyecto en 1849 con un clásico experimento. Al hacer pasar la luz reflejada por dos espejos entre los intersticios de una rueda girando rápidamente, determinó la velocidad que podría tener la luz en su trayectoria, que estimó aproximadamente en 300.000 km./s. Después de Fizeau, lo siguió León Foucault (1819 – 1868) al medir la velocidad de propagación de la luz a través del agua. Ello fue de gran interés, ya que iba a servir de criterio entre la teoría corpuscular y la ondulatoria. La primera, como señalamos, requería que la velocidad fuese mayor en el agua que en el aire; lo contrario exigía, pues, la segunda. En sus experimentos, Foucault logró comprobar, en 1851, que la velocidad de la luz cuando transcurre por el agua es inferior a la que desarrolla cuando transita por el aire. Con ello, la teoría ondulatoria adquiere cierta preeminencia sobre la corpuscular, y pavimenta el camino hacia la gran síntesis realizada por Maxwell.

[editar] Naturaleza cuántica de la luz

Sin embargo, la teoría electromagnética clásica no podía explicar la emisión de electrones por un conductor cuando incide luz sobre su superficie, fenómeno conocido como efecto fotoeléctrico.

Este efecto consiste en la emisión espontánea de electrones (o la generación de una diferencia de potencial eléctrico) en algunos sólidos (metálicos o semiconductores) irradiados por luz. Fue descubierto y descrito experimentalmente por Heinrich Hertz en 1887 y suponía un importante desafío a la teoría electromagnética de la luz. En 1905, el joven físico Albert Einstein presentó una explicación del efecto fotoeléctrico basándose en una idea propuesta anteriormente por Planck para la emisión espontánea de radiación lumínica por cuerpos cálidos y postuló que la energía de un haz luminoso se hallaba concentrada en pequeños paquetes, que denominó cuantos de energía y que en el caso de la luz se denominan fotones. El mecanismo del efecto fotoeléctrico consistiría en la transferencia de energía de un fotón a un electrón. Cada fotón tiene una energía proporcional a la frecuencia de vibración del campo electromagnético que lo conforma. Posteriormente, los experimentos de Millikan demostraron que la energía cinética de los fotoelectrones coincidía exactamente con la dada por la fórmula de Einstein.

El punto de vista actual es aceptar el hecho de que la luz posee una doble naturaleza que explica de forma diferente los fenómenos de la propagación de la luz (naturaleza ondulatoria) y de la interacción de la luz y la materia (naturaleza corpuscular). Esta dualidad onda/partícula, postulada inicialmente para la luz, se aplica en la actualidad de manera generalizada para todas las partículas materiales y constituye uno de los principios básicos de la mecánica cuántica.

[editar] Velocidad de la luz

Artículo principal: Velocidad de la luz

La velocidad de la luz en el vacío, según la Teoría de la Relatividad de Einstein, es una constante para todos los observadores y se representa mediante la letra c (del latín celeritas). En el Sistema Internacional de Unidades se toma el valor:

c = 299.792.458 m/s

[editar] Medición de la velocidad de la luz

Galileo Galilei (1564-1642), físico y astrónomo italiano, fue el primero en intentar medir la velocidad de la luz, pero el primero en encontrar un método efectivo a tal fin fue el astrónomo danés Ole Roemer (1644-1710) quien calculó en 1676 y a partir de "demoras" en los eclipses de las lunas de Júpiter, que la veleocidad de la luz era de aproximadamente 225.302 km/s.

[editar] Velocidad de las señales

Ninguna señal que contenga información puede transmitirse a velocidades superiores a la velocidad de la luz en el vacío. Este hecho es explicado en el marco de la teoría de la relatividad especial de Einstein y es una consecuencia del Principio de causalidad.

[editar] Velocidad de la luz en distintos medios

La velocidad de la luz varía según el medio en el cual se propaga, siendo más lenta en el vidrio que en el vacío o el aire. Por esto se denomina IOR (Índice de refracción) de un medio al cociente de la velocidad de la luz en el vacío y la velocidad de la luz en el medio que se desea calcular.

Ejemplos:

 IOR del Vacio = 1,00000
 (En Condiciones normales de presión y temperatura) 
 IOR del Aire = 1,00029
 IOR del Agua = 1,333
 IOR del Diamante = 2,417

[editar] Refracción de la luz

Una refracción es la desviación de un haz de luz provocado por el cambio de medio a otro con distinto IOR (Índice de refracción). Este fenómeno puede ser observado cuando uno introduce un lápiz en un vaso con agua o cuando una lupa concentra los rayos de luz en un sólo punto.

[editar] Velocidad de la luz en medios dieléctricos

La luz se propaga a velocidades menores en medios dieléctricos. Cuando en un medio material una partícula supera la velocidad de la luz correspondiente a dicho medio, se produce una emisión secundaria de luz denominada radiación Cherenkov. Este efecto se observa en reactores nucleares que utilizan el agua para apantallar emisiones de neutrones y en los grandes detectores de neutrinos de agua pesada, como el Kamiokande. También se produce un tipo de radiación Cherenkov en la alta atmósfera terrestre, causado por el impacto de rayos cósmicos y otras partículas de muy alta energía.

[editar] Cambios en la velocidad de la luz

Artículo principal: Velocidad de la luz variable

Algunas teorías cosmológicas apuntan la posibilidad de que el valor de la velocidad de la luz en el vacío podría haber variado a lo largo de la historia del Universo aunque no hay datos observacionales que permitan demostrar esta hipótesis.

Según las últimas investigaciones, entre ellas las de un astrónomo australiano, y un físico teórico portugués, este dato se está corroborando.

[editar] ¿Se puede superar c?

En numerosas ocasiones se han planteado experimentos o hechos observados en los que se afirma haber superado la velocidad de la luz. En el marco actual de la física es difícil concebir tal hecho porque esta barrera forma parte intrínseca de la estructura del espaciotiempo. Los físicos actuales sostienen que no es posible superar la velocidad de la luz en el vacío, algo difícilmente comprensible por los no entendidos en relatividad y que es considerado, frecuentemente, como una visión fundamentalista.

Muchas de las veces en que se ha dicho que se superaba c, la velocidad de la luz en el vacío, no han resultado ser más que observaciones totalmente acordes con la teoría de Einstein, teñidas de un toque de sensacionalismo por los medios de comunicación. Aunque lo correcto es especificar que en relatividad no se puede enviar información a mayor velocidad que c. Son ampliamente conocidos experimentos en los que sumas de ondas, sincronizadas del modo apropiado, producen una onda que viaja a mayor velocidad. Como también es fácilmente entendible que un faro que girase a 1 rev/s produce una iluminación sobre una pantalla circular, de 1 s-luz de radio con el faro situado en el centro; obviamente la zona iluminada viaja a 2*pi*c \,, pero no es posible que transmita información alguna.

[editar] Véase también

[editar] Enlaces externos

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Sub-domains

CDRoms - Magnatune - Librivox - Liber Liber - Encyclopaedia Britannica - Project Gutenberg - Wikipedia 2008 - Wikipedia 2007 - Wikipedia 2006 -

Other Domains

https://www.classicistranieri.it - https://www.ebooksgratis.com - https://www.gutenbergaustralia.com - https://www.englishwikipedia.com - https://www.wikipediazim.com - https://www.wikisourcezim.com - https://www.projectgutenberg.net - https://www.projectgutenberg.es - https://www.radioascolto.com - https://www.debitoformtivo.it - https://www.wikipediaforschools.org - https://www.projectgutenbergzim.com