Miguel de Cervantes y Saavedra - Don Quijote de la Mancha - Ebook:
HTML+ZIP- TXT - TXT+ZIP

Wikipedia for Schools (ES) - Static Wikipedia (ES) 2006
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
SITEMAP
Make a donation: IBAN: IT36M0708677020000000008016 - BIC/SWIFT:  ICRAITRRU60 - VALERIO DI STEFANO or
Privacy Policy Cookie Policy Terms and Conditions
Multiplicación - Wikipedia, la enciclopedia libre

Multiplicación

De Wikipedia, la enciclopedia libre

Para saber cómo multiplicar, véase Algoritmo de multiplicación.

El producto o la multiplicación es una operación aritmética que se puede explicar como una manera de sumar números idénticos.

El resultado de la multiplicación de números se llama producto. Los números que se multiplican se llaman factores o coeficientes, e individualmente como multiplicando (número a sumar) y multiplicador (veces que se suma el multiplicando). Aunque esta diferenciación en algunos contextos puede ser superflua cuando en el conjunto donde esté definido el producto se tiene la propiedad conmutativa de la multiplicación (por ejemplo, en los conjuntos numéricos). Véase [1] para una discusión sobre el tema.

En Álgebra Moderna se suele usar la denominación producto o multiplicación con su notación habitual "·" para designar la operación externa en un módulo, para designar también la segunda operación que se define en un anillo (aquella para la que no está definido el elemento inverso del 0), o para designar la operación que dota a un conjunto de estructura de grupo.

Tabla de contenidos

[editar] Notación

La multiplicación se suele indicar con el aspa × o el punto centrado ·. En ausencia de estos caracteres se suele emplear el asterisco *, sobre todo en computación (este uso tiene su origen en FORTRAN), pero está desaconsejado en otros ámbitos y sólo debe utilizarse cuando no hay otra alternativa. A veces se utiliza la letra x, pero esto es desaconsejable porque crea una confusión innecesaria con la letra que normalmente se asigna a una incógnita en una ecuación. Por último, se puede omitir el signo de multiplicación a menos que se multipliquen números o se pueda generar confusión sobre los nombres de las incógnitas, constantes o funciones (por ejemplo, cuando el nombre de alguna incógnita tiene más de una letra y podría confundirse con el producto de otras dos).

Si los factores no se escriben de forma individual y están definidos dentro de un vector, se puede escribir el producto mediante una elipsis, es decir, escribir explícitamente los primeros términos y los últimos, o, en caso de un producto de infinitos términos (o productos infinitos), sólo los primeros, y sustituir los demás por unos puntos suspensivos. Esto es análogo a lo que se hace con otras operaciones aplicadas a infinitos números (como las sumas). [El producto de infinitos términos se define como el límite del producto de los n primeros términos cuando n crece indefinidamente]

Así, el producto de todos los números naturales desde el 1 hasta el 100 se puede escribir:

1 \cdot 2 \cdot \ldots \cdot 99 \cdot 100

Esto también se puede denotar escribiendo los puntos suspensivos en la parte media de la línea de texto:

1 \cdot 2 \cdot \cdots \cdot 99 \cdot 100

En cualquier caso, deben estar claros cuáles son los términos omitidos.

Por último, se puede denotar el producto mediante el símbolo productorio, que proviene de la letra griega mayúscula Π (Pi).

Esto se define así:

\prod_{i=m}^{n} x_{i} = x_{m} \cdot x_{m+1} \cdot x_{m+2} \cdot \cdots \cdot x_{n-1} \cdot x_{n}.

El subíndice i indica una variable que recorre los números enteros desde un valor mínimo (m, indicado en el subíndice) y un valor máximo (n, indicado en el superíndice).

[editar] Definición

La multiplicación de dos números enteros n y m se define como:

\sum_{k=1}^n m=mn

Ésta no es más que una forma de simbolizar la expresión "sumar m a sí mismo n veces". Puede facilitar la comprensión el expandir la expresión anterior:

m×n = m + m + m +...+ m

tal que hay n sumandos. Así que, por ejemplo:

  • 5×2 = 5 + 5 = 10
  • 2×5 = 2 + 2 + 2 + 2 + 2 = 10
  • 4×3 = 4 + 4 + 4 = 12
  • m×6 = m + m + m + m + m + m

Utilizando esta definición, es fácil demostrar algunas propiedades interesantes de la multiplicación. Como indican los dos primeros ejemplos, el orden en que se multiplican dos números es irrelevante, lo que se conoce como propiedad conmutativa, y se cumple en general para dos números cualesquiera x e y:

x·y = y·x

La multiplicación también cumple la propiedad asociativa, que consiste en que, para tres números cualesquiera x, y y z, se cumple:

(x·y)z = x(y·z)

En la notación algebraica, los paréntesis indican que las operaciones dentro de los mismos deben ser realizadas con preferencia a cualquier otra operación.

La multiplicación también tiene lo que se llama propiedad distributiva con la suma, porque:

x(y + z) = xy + xz

Asimismo:

(x + t)(y + z) = x(y + z) + t(y + z) = xy + xz + ty + tz

También es de interés que cualquier número multiplicado por 1 es igual a sí mismo:

1·x = x

es decir, la multiplicación tiene un elemento identidad que es el 1.

¿Qué ocurre con el cero? La definición inicial no ayuda mucho porque 1 es mayor que 0. De hecho, es más fácil definir el producto por cero utilizando la segunda definición:

m·0 = m + m + m +...+ m

donde hay cero sumandos. La suma de cero veces m es cero, así que

m·0 = 0

sin importar lo que valga m, siempre que sea finito.

El producto de números negativos también requiere reflexionar un poco. Primero, considérese el número -1. Para cualquier entero positivo m:

(-1)m = (-1) + (-1) +...+ (-1) = -m

Éste es un resultado interesante que muestra que cualquier número negativo no es más que un número positivo multiplicado por -1. Así que la multiplicación de enteros cualesquiera se puede representar por la multiplicación de enteros positivos y factores -1. Lo único que queda por definir es el producto de (-1)(-1):

(-1)(-1) = -(-1) = 1

De esta forma, se define la multiplicación de dos enteros. Las definiciones pueden extenderse a conjuntos cada vez mayores de números: primero el conjunto de las fracciones o números racionales, después a todos los números reales y finalmente a los números complejos y otras extensiones de los números reales.

Los estudiantes a veces se quedan sorprendidos cuando se les dice que el producto vacío, es decir, multiplicar cero factores, vale 1.

Una definición recursiva de la multiplicación puede darse según estas reglas:

x·0 = 0
x·y = x + x·(y-1)

donde x es una cantidad arbitraria e y es un número natural. Una vez el producto está definido para los números naturales, se puede extender a conjuntos más grandes, como ya se ha indicado anteriormente.

[editar] Cálculo de un producto

Para multiplicar números con lápiz y papel, hace falta tener una tabla de multiplicar (en una hoja de papel, o, mejor, memorizada). También es necesario conocer algún algoritmo para multiplicar números.

Un algoritmo muy antiguo, utilizado en el antiguo Egipto, es el de la multiplicación por duplicación.

Hoy en día se suelen multiplicar números de varias cifras mediante la suma de los productos del multiplicando por las cifras sucesivas del multiplicador multiplicadas por la potencia de 10 correspondiente a cada cifra del multiplicador.

Véase algoritmo de multiplicación para ver formas rápidas de calcular productos de números grandes.

[editar] Otros productos

[editar] Véase también

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Sub-domains

CDRoms - Magnatune - Librivox - Liber Liber - Encyclopaedia Britannica - Project Gutenberg - Wikipedia 2008 - Wikipedia 2007 - Wikipedia 2006 -

Other Domains

https://www.classicistranieri.it - https://www.ebooksgratis.com - https://www.gutenbergaustralia.com - https://www.englishwikipedia.com - https://www.wikipediazim.com - https://www.wikisourcezim.com - https://www.projectgutenberg.net - https://www.projectgutenberg.es - https://www.radioascolto.com - https://www.debitoformtivo.it - https://www.wikipediaforschools.org - https://www.projectgutenbergzim.com