Miguel de Cervantes y Saavedra - Don Quijote de la Mancha - Ebook:
HTML+ZIP- TXT - TXT+ZIP

Wikipedia for Schools (ES) - Static Wikipedia (ES) 2006
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
SITEMAP
Make a donation: IBAN: IT36M0708677020000000008016 - BIC/SWIFT:  ICRAITRRU60 - VALERIO DI STEFANO or
Privacy Policy Cookie Policy Terms and Conditions
Número ordinal - Wikipedia, la enciclopedia libre

Número ordinal

De Wikipedia, la enciclopedia libre

Sistema numérico en matemática.
Conjuntos de Números

\mathbb{N}\sub\mathbb{Z}\sub\mathbb{Q}\sub\mathbb{R}\sub\mathbb{C}

Números destacables
    • π (Pi) (3.1415926535...)
    • e (2.7182818284...)
    • Φ (1,6180339887...)
    • i (\sqrt{-1})
Números Especiales
Números con propiedades especiales

Primos \mathbb{P}, Abundantes, Perfectos, Defectivos, Amigos, Sociables, Algebraicos


En matemáticas, un número ordinal es un número que denota la posición de un elemento perteneciente a una sucesión ordenada. Por ejemplo, en la sucesión a b c d, el elemento a es el primero, b el segundo, c el tercero, etc.

Los números ordinales pueden generalizarse para las sucesiones infinitas, introducida por Georg Cantor en 1897. Es esta generalización la que se explicará en este artículo.

Texto en negrita== Verbalización de los ordinales == En el idioma español, en algunos casos, la descripción de los números ordinales puede confundirse con la de las fracciones. Por ejemplo:

  • 4° = cuarto
  • 1/4 = un cuarto
  • 5° = quinto
  • 1/5 = un quinto

Sin embargo,

  • 11° = undécimo (también se dice, incorrectamente, decimoprimero u onceavo)[1]
  • 1/11 = un onceavo
  • 20° = vigésimo
  • 1/20 = un veinteavo
  • 21° = vigésimo primero
  • 1/21 = un veintiunavo

La forma correcta de verbalizar los números ordinales es:

1° primero 2° segundo 3° tercero 4° cuarto 5° quinto 6° sexto 7° séptimo 8° octavo 9° noveno 10° décimo 11° undécimo 12° duodécimo 13° decimotercero 14° decimocuarto 15° decimoquinto 16° decimosexto 17° decimoséptimo 18° decimoctavo 19° decimonoveno

y los que revisten mayor dificultad...

20° vigésimo 30° trigésimo 40° cuadragésimo 50° quincuagésimo 60° sexagésimo 70° septuagésimo 80° octogésimo 90° nonagésimo

100° centésimo 200° ducentésimo 300° tricentésimo 400° cuadrigentésimo 500° quingentésimo 600° sexcentésimo 700° septingentésimo 800° octingentésimo 900° noningentésimo

Tabla de contenidos

[editar] Generalización

Los números naturales se pueden emplear con dos fines distintos: describir el tamaño de un conjunto y describir la posición de un elemento en una sucesión. Aunque en el mundo finito estos dos conceptos coinciden, cuando se trata con conjuntos infinitos hay que distinguirlos entre sí. El aspecto del tamaño de un conjunto se describe mediante números cardinales, que también fueron descubiertos por Cantor, mientras que el aspecto de la posición se generaliza mediante los números ordinales, los que analizaremos aquí.

En la teoría de conjuntos, los números naturales se suelen construir como conjuntos tales que cada número natural es el conjunto de todos los números naturales más pequeños:

Visto así, cada número natural es un conjunto bien ordenado: por ejemplo, el conjunto del 4 tiene los elementos 0, 1, 2 y 3, que por supuesto se ordenan 0 < 1 < 2 < 3, y éste es un buen orden. Un número natural es menor que otro si y sólo si es un elemento del otro.

Bajo esta convención, se puede demostrar que todo conjunto finito bien ordenado es ordenadamente isomorfo a exactamente un número natural. Este isomorfismo motiva a generalizar esta construcción hacia los conjuntos no finitos y sus correspondientes números que serían más grandes que cualquier número natural.

[editar] Definición moderna de ordinal

Se desea construir números ordinales como conjuntos bien ordenados especiales de forma que todo conjunto bien ordenado es ordenadamente isomorfo a exactamente un número ordinal. La siguiente definición mejora el enfoque de Cantor y fue propuesto inicialmente por John von Neumann:

Un conjunto S es un ordinal si y sólo si S está totalmente ordenado con respecto a la inclusión de conjuntos (es decir, la relación subconjunto) y todo elemento de S es también un subconjunto de S.

Basándose en el axioma de regularidad, que puede enunciarse como: «Todo conjunto no vacío “S” contiene un elemento “a” disjunto de “S”.»

Nótese que los naturales, en la representación propuesta más arriba son los llamados ordinales finitos. Por ejemplo, es un elemento de 4 = {0, 1, 2, 3}, y 2 es igual a {0, 1} por lo que también es un subconjunto de 4.

Se puede demostrar, aplicando inducción transfinita que todo conjunto bien ordenado es ordenadamente isomorfo a exactamente uno de estos ordinales.

Más aún, los elementos de cada ordinal son en sí mismos ordinales. Cuando se tienen dos ordinales S y T, S es un elemento de T si y sólo si S es un subconjunto propio de T, y más aún, cuando S y T son distintos y S no es un elemento de T, se cumple que T es un elemento de S. De manera que todo conjunto de ordinales está totalmente ordenado y más aún, Todo conjunto de ordinales es bien ordenado. Este último resultado es la generalización de la misma propiedad sobre los naturales, lo que permite enunciar y utilizar inducción transfinita para demostrar propiedades sobre ordinales.

Otra consecuencia es que todo ordinal S es un conjunto que contiene como elementos precisamente los ordinales más pequeños que S. Esta afirmación determina completamente la estructura de conjunto de cada ordinal en términos de otros ordinales. Ella es utilizada para demostrar muchas de los propiedades de estos números. Un ejemplo de ello es una importante caracterización de la relación de orden entre ordinales: todo conjunto de ordinales tiene un supremo, que es el ordinal obtenido como la unión de todos los ordinales del conjunto. Otro ejemplo es el hecho que la colección de todos los ordinales no es un conjunto. Puesto que todo ordinal contiene únicamente ordinales, se cumple que todo elemento de la colección de todos los ordinales también es su subconjunto. Así, si esa colección fuera un conjunto, tendría que ser un ordinal también, por definición; entonces sería un elemento de él mismo, lo cual contradice el axioma de regularidad. (Véase también la Paradoja de Burali-Forti).

[editar] Aplicaciones

Los ordinales se utilizan comúnmente para realizar demostraciones de terminación de algoritmos. El sistema de ayuda a la demostración ACL2 permite utilizar números ordinales como cota de terminación de algoritmos y es capaz de realizar pruebas por inducción transfinita.

[editar] Véase también

[editar] Notas y referencias

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Sub-domains

CDRoms - Magnatune - Librivox - Liber Liber - Encyclopaedia Britannica - Project Gutenberg - Wikipedia 2008 - Wikipedia 2007 - Wikipedia 2006 -

Other Domains

https://www.classicistranieri.it - https://www.ebooksgratis.com - https://www.gutenbergaustralia.com - https://www.englishwikipedia.com - https://www.wikipediazim.com - https://www.wikisourcezim.com - https://www.projectgutenberg.net - https://www.projectgutenberg.es - https://www.radioascolto.com - https://www.debitoformtivo.it - https://www.wikipediaforschools.org - https://www.projectgutenbergzim.com