Web - Amazon

We provide Linux to the World


We support WINRAR [What is this] - [Download .exe file(s) for Windows]

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
SITEMAP
Audiobooks by Valerio Di Stefano: Single Download - Complete Download [TAR] [WIM] [ZIP] [RAR] - Alphabetical Download  [TAR] [WIM] [ZIP] [RAR] - Download Instructions

Make a donation: IBAN: IT36M0708677020000000008016 - BIC/SWIFT:  ICRAITRRU60 - VALERIO DI STEFANO or
Privacy Policy Cookie Policy Terms and Conditions
0 (liczba) - Wikipedia, wolna encyklopedia

0 (liczba)

Z Wikipedii

Na tę stronę wskazuje przekierowanie ze strony zero. Zobacz też: inne znaczenia słowa "zero".
0
0 1 2 3 4 5 6 7 8 9 10

0 10 20 30 40 50 60 70 80 90 100

faktoryzacja brak
dzielniki brak
zapis rzymski brak
binarnie 0
ósemkowo 0
szesnastkowo 0
Wartości funkcji teorioliczbowych
φ(0) = nieokreślony τ(0) = nieokreślony
σ(0) = nieokreślony π(0) = 0
μ(0) = nieokreślony M(0) = nieokreślony

Zero (zapisywane jako 0) – element neutralny dodawania; najmniejsza nieujemna liczba. To, czy zero jest uznawane za liczbę naturalną, jest kwestią umowy – czasem włącza się, a czasem wyklucza się je z tego zbioru. Zero nie jest ani liczbą pierwszą ani liczbą złożoną.

Pierwszy raz symbol ten został użyty przez matematyków hinduskich jako oznaczenie braku czegoś. W większości kalendarzy nie ma roku zerowego. Rok przed 1 rokiem naszej ery nazywany jest 1 rokiem przed naszą erą.

Spis treści

[edytuj] Historia

Symbol zera był wykorzystywany w systemach zapisu liczb, w których pozycja cyfry miała znaczenie. Dla przykładu liczba 20075 z odstępami zamiast zer staje się nieczytelna (2  75) i może zostać łatwo pomylona z liczbą 2075 (2 75) i 275 .

Pierwszy raz system pozycyjny do zapisu liczb wykorzystali mieszkańcy Sumeru i Elamu ok. roku 3200 p.n.e. Zapis opierał się na liczbie 60 (kopa). Początkowo brak wartości w jednym z rzędów oznaczano pustym miejscem. Babilończycy odziedziczyli ten sposób zapisu. Archeolodzy odnaleźli glinianą tabliczkę, pochodzącą z okresu starobabilońskiego, datowaną na lata 1900 - 1600 p.n.e (XV wiek p.n.e.). Umieszczono na niej listę trójek pitagorejskich. Brak cyfry w jednym z rzędów oznaczono na niej pustym miejscem.

Rzymianie w obliczeniach posługiwali się abakusem. W miejscu, gdzie miało być zero, pozostawiali pustą przestrzeń. Później, m.in Grecy, do liczenia używali zwykłych stołów z krążkami z odpowiednimi cyframi. W miejsce zera wstawiano pusty krążek bez żadnej liczby. Kiedy pod koniec średniowiecza zaczęto wykonywać działania na dostępnym już i tanim papierze, w miejsce zera rysowano zwykłe kółko, które miało przypominać okrągły krążek bez cyfry.

Przed rokiem 300 p.n.e. zaadaptowano jako zero jeden z symboli interpunkcyjnych - podwójną ukośną kreseczkę. Jednak był on wykorzystywany tylko jako cyfra zero, a nie jako liczba.

W starożytnej Grecji status zera jako liczby budził kontrowersje: pytano “czy nic może być czymś”? Kwestia ta wiązała się z filozoficzną dysputą dotyczącą możliwości istnienia próżni. Niejasna interpretacja zera stała się też jedną z podstaw sformułowania paradoksów Zenona z Elei. Dyskusja na temat sensu zera ożyła ponownie w średniowieczu, gdzie nabrała dodatkowego wymiaru religijnego.

W roku 130 Ptolemeusz pod wpływem Hipparchosa zaczął używać symbolu oznaczającego zero. Znak ten miał postać kółka z poziomą linią na górze. Ptolemeusz wykorzystywał zero razem z sześćdziesiątkowym systemem liczbowym opartym na alfabecie greckim. Szczególne było tutaj wykorzystywanie zera samodzielnie. Dla przykładu, różnice położenia kątowego Słońca i Księżyca podczas zaćmienia naszej gwiazdy, Ptolemeusz w swoim dziele Almagest podawał jako 0 | 0 0. W wielu późniejszych tekstach napisanych w Bizancjum zero przyjęło formę greckiej litery omikron (ο) – wcześnie była ona używana do oznaczenia liczby 70.

Kilka wieków przed Ptolemeuszem zera jako liczby zaczęli używać Olmekowie. Przypuszcza się, że już ok. 400 p.n.e. wykorzystywali do tego symbol przypominający muszlę. Pełne potwierdzenie tego faktu dotyczy dopiero roku 40 p.n.e. Potem zero Olmeków zostało przejęte przez Majów w ich systemie liczbowym.

W rzymskim zapisie liczbowym zero nie było używane, jednak średniowieczni mnisi znali to pojęcie pod łacińską nazwą nullae – nic. Zero było wykorzystywane przy obliczaniu daty Wielkanocy. Przykładem są tu dzieła Dionysiusa Exiguusa pochodzące z roku 525. W roku 725 Beda (lub jeden z jego współpracowników) wykorzystał literę N do zapisu zera w połączeniu z liczbami rzymskimi.

Współczesny symbol zero pochodzi z Indii. Dnia 25 sierpnia 458 roku członkowie odłamu dźinistów ogłosili traktat Lokavibhaaga. Zero nazywano w nim "śuunya", co znaczy pusty. Innym z tekstów zwierających tą liczbę stał się wierszowany podręcznik Brahmasphutasiddhanta napisany w roku 628 przez hinduskiego matematyka i astronoma Brahmaguptę. Pomysł okazał się trafny i szybko został przyjęty w Kambodży, Chinach, a potem trafił do świata arabskiego. Uczeni z kręgu islamskiego nadali zeru jego nazwę, która pochodzi od arabskiego słowa sifr (صفر) oznaczającego pusty.

Europejczycy zaznajomili się z zerem w XI wieku za sprawą papieża-uczonego Sylwestra II, który starał się je popularyzować, a następnie, już na szerszą skalę, podczas krucjat do Ziemi Świętej w XII wieku. W roku 1202 we Włoszech Fibonacci wydał podręcznik arytmetyki Liber abaci, w którym posługiwał się słowem zephirum oznaczającym zero. Współczesna nazwa tej liczby stała się powszechna od roku 1491.

Człowiek czytający tekst nie zawsze jest w stanie odróżnić cyfrę 0 od litery O, w początkach historii komputerów operatorzy przepisujący ręcznie pisane programy często mylili się zamieniając 0 z O, a w systemach komputerowych litera oraz cyfra są zupełnie różnymi znakami, co oznacza konieczność nadania im rozróżnialnych kształtów. Jako pierwszy taki zapis wprowadził IBM w terminalu ekranowym IBM 3270. Wewnątrz zera umieszczono kropkę. Inna, stosowana w wielu urządzeniach, wersja zero ma w środku przekreślenie. Zostało ono wprowadzone do standardu ASCII wywodzącego się od dalekopisów. Niestety, autorzy tego znaku nie wiedzieli, że Norwegowie oraz Duńczycy używają podobnego symbolu Ø jako litery. Zwyczaj ten obecnie zanika.

[edytuj] Etymologia w języku polskim

Jest to wyraz zapożyczony ze średniowiecznej łaciny, gdzie miał postać zephirum i znaczenie "cyfra". Wyrazy "cyfra" i "szyfr" wywodzą się zresztą z tego samego źródłosłowu, lecz za pośrednictwem języków niemieckiego i francuskiego. Z kolei wyraz łaciński wywodzi się z arabskiego ṣifr - "zero, pustka, próżnia".

[edytuj] Zero w matematyce

Należy rozróżnić kilka pojęć w matematyce występujących pod wspólną nazwą zero.

W żargonie matematycznym, termin zero funkcji używany jest czasem jako synonim miejsca zerowego funkcji.

[edytuj] Symbol 0

Symbol 0 występuje w większości działów współczesnej matematyki.

  • W algebrze symbol 0 może służyć do oznaczania elementu neutralnego działania w grupie, najczęściej dodawania.
  • W teorii mnogości symbol 0 używany jest do oznaczania mocy (liczby elementów) zbioru pustego.
  • W myśl postulatów Peano dla liczb naturalnych, symbolem 0 oznacza się najmniejszą liczbą naturalną. Niektóre definicje liczb naturalnych (nie związane z logiką i teorią mnogości) nie obejmują jednak pojęcia zera.

[edytuj] Własności liczby rzeczywistej zero

Wynik dzielenia przez zero jest nieokreślony: definicja dzielenia wymaga, aby dzielnik był różny od zera.

Zgodnie z definicją potęgowania rzeczywista liczba dodatnia podniesiona do potęgi zero daje jeden:

a0 = 1.

Wartość 00 jest w zależności od przyjętej konwencji - niezdefiniowana lub też równa 1. (czytaj więcej)

Logarytm przy dowolnej większej od zera podstawie z jedności jest równy zero:

loga1 = 0

[edytuj] Zero w informatyce

Ludzie liczą zwykle przedmioty zaczynając od jedności. Jednak w językach programowania popularne jest liczenie od zera. Wynika to, z faktu wykorzystania licznika do określania adresu elementu:

Adresowanie elementów tabeli
Numery elementów: 0 1 2 3 4 ...
Adres pamięci: n n+1 n+2 n+3 n+4 n+...
dla n=23 23 24 25 26 27 ...

Jeżeli pierwszy element jest w 23 komórce pamięci, to element 5 znajduje się w 27. Jeżeli odejmiemy te liczby okaże się, że 5. elementowi odpowiada konieczność dodania 4, aby uzyskać jego adres w pamięci. Zerowaniem określa się czasami w informatyce czynność wypełniania obszaru pamięci zerami. Zdarza się, że na skutek błędu w oprogramowaniu (ang. bug) czynność ta jest pomijana, co prowadzi do pojawienia się w danych bezsensownych wartości.

[edytuj] Zero a skale pomiarowe

Sposób określenia zera w pomiarze wielkości fizycznej jest związany z rodzajem skali pomiarowej.

[edytuj] Bibliografia

  • Georges Ifrah: Dzieje liczby, czyli historia wielkiego wynalazku. Wrocław: Ossolineum, 1990. ISBN 83-04-03218-X. 
  • Georges Ifrah: The Universal History of Numbers: From Prehistory to the Invention of the Computer. Tłumaczenie: David Bellos, E. F. Harding, Sophie Wood i Ian Monk. Nowy Jork: John Wiley & Sons Inc., 2000. ISBN 0-471-39671-0. 

[edytuj] Zobacz też

[edytuj] Linki zewnętrzne

Our "Network":

Project Gutenberg
https://gutenberg.classicistranieri.com

Encyclopaedia Britannica 1911
https://encyclopaediabritannica.classicistranieri.com

Librivox Audiobooks
https://librivox.classicistranieri.com

Linux Distributions
https://old.classicistranieri.com

Magnatune (MP3 Music)
https://magnatune.classicistranieri.com

Static Wikipedia (June 2008)
https://wikipedia.classicistranieri.com

Static Wikipedia (March 2008)
https://wikipedia2007.classicistranieri.com/mar2008/

Static Wikipedia (2007)
https://wikipedia2007.classicistranieri.com

Static Wikipedia (2006)
https://wikipedia2006.classicistranieri.com

Liber Liber
https://liberliber.classicistranieri.com

ZIM Files for Kiwix
https://zim.classicistranieri.com


Other Websites:

Bach - Goldberg Variations
https://www.goldbergvariations.org

Lazarillo de Tormes
https://www.lazarillodetormes.org

Madame Bovary
https://www.madamebovary.org

Il Fu Mattia Pascal
https://www.mattiapascal.it

The Voice in the Desert
https://www.thevoiceinthedesert.org

Confessione d'un amore fascista
https://www.amorefascista.it

Malinverno
https://www.malinverno.org

Debito formativo
https://www.debitoformativo.it

Adina Spire
https://www.adinaspire.com